Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T06:41:39.445Z Has data issue: false hasContentIssue false

PHOTOSYNTHESIS AND BIOMASS PRODUCTION BY MILLET (PENNISETUM GLAUCUM) AND TARO (COLOCASIA ESCULENTA) GROWN UNDER BAOBAB (ADANSONIA DIGITATA) AND NÉRÉ (PARKIA BIGLOBOSA) IN AN AGROFORESTRY PARKLAND SYSTEM OF BURKINA FASO (WEST AFRICA)

Published online by Cambridge University Press:  13 February 2012

JOSIAS SANOU*
Affiliation:
Institut de l'Environnement et de Recherches Agricoles (INERA)/Département Productions Forestières, 03 BP 7047 Ouagadougou 03, Burkina Faso
JULES BAYALA
Affiliation:
World Agroforestry Centre (ICRAF), ICRAF-WCA/Sahel Node, BPE5118 Bamako, Mali
PAULIN BAZIÉ
Affiliation:
Institut de l'Environnement et de Recherches Agricoles (INERA)/Département Productions Forestières, 03 BP 7047 Ouagadougou 03, Burkina Faso
ZEWGE TEKLEHAIMANOT
Affiliation:
School of the Environment and Natural Resources, University of Bangor, Gwynedd LLL57 2UW, UK
*
Corresponding Author: E-mail: josiassanou@yahoo.fr

Summary

Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) was studied at Nobéré (Burkina Faso) with the aim of optimising parkland systems productivity. Millet yielded the highest biomass under Baobab and the lowest biomass was recorded in the zone close to the tree trunk of néré. In contrast, the biomass of taro was higher in heavy shaded zones under néré and the zone close to baobab's trunk. The two crops showed an increasing trend of photosynthesis rate (PN) from tree trunk to the open area. However, the increase in the PN of taro from tree trunk to the open field was lower compared to that of millet. By increasing its leaf area index (LAI) under shade, taro displayed higher biomass production under tree compared to the open area while an opposite trend was observed in millet. The high millet biomass production under baobab could be explained by light availability and the reduction of temperature under shade compared to the open field. The adaptation of taro to shade by increasing its LAI and thus avoiding drastic reduction in PN under shade resulted in better biomass production under heavy shade. Therefore, it was concluded that by replacing millet with taro under dense tree crowns the productivity of agroforestry parkland systems could be increased.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayala, J., Balesdent, J., Marol, C., Zapata, F., Teklehaimanot, Z. and Ouédraogo, S. J. (2006). Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutrient Cycling in Agroecosystems 76:193201.CrossRefGoogle Scholar
Bayala, J., Teklehaimanot, Z. and Ouédraogo, S. J. (2002). Millet production under pruned tree crowns in a parkland system in Burkina Faso. Agroforest Systems 54:203214.CrossRefGoogle Scholar
Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R. and Mwonga, S. M. (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26:10051024.CrossRefGoogle Scholar
Boegh, E., Soegaard, H., Hanan, N., Kabat, P. and Lesch, L. (1999). A remote-sensing based study of the NDVI-Ts relationship and transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sensing of Environment 69:224240.CrossRefGoogle Scholar
Boffa, J. M.,(1999). Agroforestry parklands in sub-Saharan Africa. FAO Conservation Guide 34. Rome, Italy.Google Scholar
Boffa, J.-M., Taonda, S. J.-B., Dickey, J. B. and Knudson, D. M. (2000). Field-scale influence of karité (Vitellaria paradoxa) on sorghum production in the Sudan zone of Burkina Faso. Agroforestry Systems 49:153175.CrossRefGoogle Scholar
Breman, H. and Kessler, J. J. (1995). Woody Plants in Agro-Ecosystems of Semi-Arid Regions, with An Emphasis on the Sahelian Countries. Berlin: Springer Verlag, 340 p.CrossRefGoogle Scholar
Caesar, K. (1980). Growth and development of Xanthosoma and Colocasia under different light and water supply conditions. Field Crops Research 3:235244.CrossRefGoogle Scholar
Ewert, F. (2004). Modelling plant responses to elevated CO2: how important is leaf area index? Annals of Botany 93:619627.CrossRefGoogle ScholarPubMed
Garcia-Barrios, I. and Ong, C. K. (2004). Ecological interaction lessons and design tools in tropical agroforestry systems. Agroforestry Systems 61:221236.Google Scholar
Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T. and Bowyer, P. (2007). Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Global Change Biology 13:14841497.CrossRefGoogle Scholar
Hay, R. and Porter, J. (2006). The Physiology of Crop Yield. Oxford, UK: Blackwell, 314 p.Google Scholar
Johnston, M. and Onwueme, , , I. C. (1998). Effect of shade on photosynthetic pigments in the tropical root crops: Yam, Taro, Tannia, Cassava and Sweet Potato. Experimental Agriculture 34:301312.CrossRefGoogle Scholar
Jonsson, K., Ong, C. K. and Odongo, J. C. W. (1999). Influence of scattered néré and karité trees on microclimate, soil fertility and millet yield in Burkina Faso. Experimental Agriculture 35:3953.CrossRefGoogle Scholar
Kessler, J. J. (1992). The influence of Karité (Vitellaria paradoxa) and Néré (Parkia biglobosa) trees on sorghum production in Burkina Faso. Agroforestry Systems 17:97118.CrossRefGoogle Scholar
Lin, C. H., McGraw, R. L., George, M. F. and Garrett, H. E. (2001). Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforestry Systems 53:269281.CrossRefGoogle Scholar
Maiga, A. (1987). L'arbre dans les Bazega. Influence du Karité, du Néré et de l'Acacia albida sur le sorgho et le Mil. Mémoire Institut de développement rural (IDR). Ouagadougou, Burkina Faso: IRBET/CNRST.Google Scholar
Masojidek, J. J., Trivedi, S., Halshaw, L., Alexiou, A. and Hall, D. O. (1991). The synergistic effect of drought and light stresses in sorghum and pearl millet. Plant Physiology 96:198207.CrossRefGoogle ScholarPubMed
McPherson, H. G. and Slatyer, R. O. (1973). Mechanisms regulating photosynthesis in Pennisetum typhoides. Australian Journal of Biological Sciences 26;329339.CrossRefGoogle Scholar
Miyasaka, S. C., Ogoshi, R. M., Tsuji, G. Y. and Kodani, L. S. (2003). Site and planting date effects on taro growth: comparison with aroid model predictions. Agronomy Journal 95:545557.Google Scholar
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B 281;277294.Google Scholar
Nikiéma, A. (2005). Agroforestry parkland species diversity: uses and management in semi-arid West Africa (Burkina Faso). PhD thesis, Wageningen University, Wageningen, 97 p.Google Scholar
Ong, C. K., Black, C. R., Marshall, F. M. and Corlett, J. (1996). Principles of resource capture and utilization of light and water. In Tree–Crop Interactions: A Physiological Approach, 73158 (Eds. Ong, C. K. and Huxley, P.). Wallingford, UK: CAB International.Google Scholar
Ong, C. K. and Leakey, R. R. B. (1999). Why tree–crop interactions in agroforestry appear at odds with tree–grass interactions in tropical savannahs. Agroforestry Systems 45:109129.CrossRefGoogle Scholar
Ong, C. K. and Swallow, B. M. (2003). Water productivity in forestry and agroforestry. In Belowground Interactions in Multiple Agroecosystems, 217228 (Eds. van Noordwijk, M., Cadisch, G. and Ong, C. K.). Wallingford, UK: CAB International.Google Scholar
Onwueme, I. (1999). Taro cultivation in Asia and the Pacific. FAO, Regional office for Asia and the Pacific, Bangkok, Thailand. [Online]. Available online from: http://www.fao.org/docrep/005/ac450e/ac450e00.html#Contents [Accessed 12th August 2007].Google Scholar
Onwueme, I. C. and Johnston, M. (2000). Influence of shade on stomatal density, leaf size and other characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. Experimental Agriculture 36:509516.CrossRefGoogle Scholar
Osborne, C. P., Wythe, E. J., Ibrahim, D., Gilbert, M. E. and Ripley, B. S. (2008). Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany 59 (7):17431754.CrossRefGoogle ScholarPubMed
Rao, M. R., Nair, P. K. R. and Ong, C. K. (1998). Biophysical interactions in tropical agroforestry systems. Agroforestry Systems 38:350.CrossRefGoogle Scholar
Rogers, S. and Iosepha, T. (1993). Shade levels for taro cropping systems. Agroforest Today 5 (2): 912.Google Scholar
Sanchez, P. A. (1995). Science in agroforestry. Agroforestry Systems 30 (1–2):155.CrossRefGoogle Scholar
Sato, T., Kawai, M. and Fukuyama, T. (1978). Studies on matter production of taro plant (Colocasia esculenta Schott): I. changes with growth in photosynthetic rate of single leaf. Japanese Journal of Crop Science 47:425430.CrossRefGoogle Scholar
Schaffer, B. and O'Hair, S. K. (1987). Net CO2 assimilation of taro and cocoyam as affected by shading and leaf age. Photosynthesis Research 11:245251.CrossRefGoogle ScholarPubMed
Singh, B. R. and Singh, D. P. (1995). Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crops Research 42:5767.CrossRefGoogle Scholar
Sugimoto, H., Fujita, T., Koesmaryono, Y. and Sato, T. (1997). Canopy light distribution, photosynthesis and tuber yield of eddoe plant characterized by clipping and non-clipping of daughter tuber leaves. Journal of Agricultural Meteorology 52:889892.CrossRefGoogle Scholar
Tewolde, H., Dobrenz, A. K. and Voigt, R. L. (1993). Seasonal trends in leaf photosynthesis and stomatal conductance of drought stressed and nonstressed pearl millet as associated to vapour pressure deficit. Photosynthesis Research 38:4149.CrossRefGoogle Scholar
Warner, D. A. and Edwards, G. E. (1988). C4 photosynthesis and leaf anatomy in diploid and allotetraploid Pennisetum americanum (pearl millet). Plant Science 56:8592.CrossRefGoogle Scholar
Wilson, T. D., Brook, R. M. and Tomlinson, H. F. (1998). Interaction between néré (Parkia biglobosa) and under-planted sorghum in parkland systems in Burkina Faso. Experimental Agriculture 35:8598.CrossRefGoogle Scholar
Wong, C. C. (1991). Shade tolerance of tropical forages: a review. In Forages for Plantation Crops, 6469 (Eds. Shelton, H. M. and Stur, W. W.). Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR), Procedure No. 32.Google Scholar
Yang, J.-D., Zhao, H.-L. and Zhang, T.-H. (2004). Diurnal patterns of net photosynthetic rate, stomatal conductance and chlorophyll fluorescence in leaves of field-grown mungbean (Phaseolus radiatus) and millet (Setaria italica). New Zealand Journal of Crop and Horticultural Science 32:273279.CrossRefGoogle Scholar