Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T13:05:14.993Z Has data issue: false hasContentIssue false

Use of successional sowing in evaluating cowpea (Vigna unguiculata) adaptation to drought in the Sudan savannah zone. 1. Seed yield response

Published online by Cambridge University Press:  27 March 2009

N. Muleba
Affiliation:
International Institute of Tropical Agriculture, Cowpea Agronomy, SAFGRAD, 01 BP 1495, Ouagadougou 01, Burkina Faso
M. Mwanke
Affiliation:
International Institute of Tropical Agriculture, Cowpea Agronomy, SAFGRAD, 01 BP 1495, Ouagadougou 01, Burkina Faso
I. Drabo
Affiliation:
International Institute of Tropical Agriculture, Cowpea Agronomy, SAFGRAD, 01 BP 1495, Ouagadougou 01, Burkina Faso

Summary

Two sets of experiments were conducted on oxic Plinthustalf and udic Ustochrept soils in 1983–85 at Ouagadougou, Burkina Faso. One set tested six daylength-insensitive (DI) cultivars and the other set compared four or five daylength-sensitive (DS) cultivars with one or two DI cultivars as controls, sown on three or four dates. Sowing date, cultivar and their interaction significantly affected seed yield in 1983 and 1985. In 1984, yield was not affected by sowing date in the DI cultivars nor by the sowing date x cultivar interaction in the DS cultivars. Optimum sowing dates were mid- and late July. Sowing earlier gave no yield advantage, whereas sowing later reduced yield severely.

The medium-maturing DI cultivar TN88–63 and the DS cultivar Koakin Local, which has a critical photoperiod in late August, exhibited average to below average yield stability but had a high mean yield and were considered well adapted in all conditions. The other cultivars were either moderately or poorly adapted to the Sudan savannah zone. The sowing date experiments were effective in identifying adapted cowpea cultivars, even from a single year's data, and can be used for screening cowpea for adaptation in the Sudan savannah zone.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aggarwal, V. D. & Halley, S. D. (1988). Breeding for drought and Siriga resistance in cowpea. In Food Grain Production in Semi-arid Africa (Eds Menyonga, J. M., Bezuneh, T. & Youdeowei, A.), pp. 307319. Proceedings of an international drought symposium. Trowbridge, UK: OAU/STRC–SAFGRAD (Redwood Burn Ltd).Google Scholar
Allard, R. W. & Bradshaw, A. D. (1964). Implications of genotype–environmental interactions in applied plant breeding. Crop Science 4, 503507.CrossRefGoogle Scholar
Boulet, R. (1976). Notices des Cartes de Ressources en Sol de Haute-Volta. Office de la Recherche Scientifique et Technique d'outre-Mer.Google Scholar
Comstock, R. E. & Moll, R. H. (1963). Genotype–environment interactions. Symposium on Statistical Genetics and Plant Breeding, Publication National Research Council, National Academy of Sciences 982, 164196.Google Scholar
Eberhart, S. A. & Russell, W. A. (1966). Stability parameters for comparing varieties, Crop Science 6, 3640.CrossRefGoogle Scholar
Fakorede, M. A. B.; Akingbohungbe, A. E. & Ogunbodede, B. A. (1983). Use of planting dates in the preliminary evaluation of new cowpea cultivars. Experimental Agriculture 19, 163168.CrossRefGoogle Scholar
Finlay, K. W. & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14, 742754.CrossRefGoogle Scholar
Muleba, N. (1988 a). Rainfall characteristics at selected sites in Burkina Faso. In Food Grain Production in Semi-arid Africa (Eds Menyonga, J. M., Bezuneh, T. & Youdeowei, A.), pp. 385392. Proceedings of an international drought symposium. Trowbridge, UK: OAU/STRC–SAFGRAD (Redwood Burn Ltd).Google Scholar
Muleba, N. (1988 b). Responses of cowpea to high soil temperature and drought. In Food Grain Production in Semi-arid Africa (Eds Menyonga, J. M., Bezuneh, T. & Youdeowei, A.), pp. 331349. Proceedings of an international drought symposium. Trowbridge, UK: OAU/STRC–SAFGRAD (Redwood Burn Ltd).Google Scholar
Perkins, J. M. & Jinks, J. L. (1968). Environmental and genotype–environmental components of variability. III. Multiple lines and crosses. Heredity 23, 339356.CrossRefGoogle Scholar
Peron, Y., Zalacain, V. & Laclavere, G. (1975). Atlas de la Haute-Volta. Paris: Editions Jeune Afrique.Google Scholar
Sivakumar, M. V. K., Konate, M. & Virmani, S. M. (1984). Agroclimatology of West Africa: Mali. ICRISAT Information Bulletin No. 19, pp. 294.Google Scholar
Turk, J. K., Hall, A. E. & Asbell, C. M. (1980). Drought adaptation of cowpea. 1. Influence of drought on seed yield. Agronomy Journal 72, 413420.CrossRefGoogle Scholar
Virmani, S. M., Reddy, S. J. & Bose, M. N. S. (1980). Manuel de climatologie pluviale de l'afrique Occidentale: Données pour des stations sélectionnées. ICRISAT. Information Bulletin No. 7, pp. 56.Google Scholar
Warrag, M. O. A. & Hall, A. E. (1983). Reproductive responses of cowpea to heat stress: genotypic differences in tolerance to heat at flowering. Crop Science 23, 10881092.CrossRefGoogle Scholar
Warrag, M. O. A. & Hall, A. E. (1984). Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperatures. Field Crops Research 8, 1733.CrossRefGoogle Scholar
Ziska, L. H. & Hall, A. E. (1983). Seed yield and water use of cowpeas (Vigna unguiculata, (L.) Walp.) subjected to planned water-deficit irrigation. Irrigation Science 3, 237245.CrossRefGoogle Scholar