Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T03:02:00.556Z Has data issue: false hasContentIssue false

The linear stability of high-frequency oscillatory flow in a channel

Published online by Cambridge University Press:  24 May 2006

P. J. BLENNERHASSETT
Affiliation:
School of Mathematics, University of New South Wales, Sydney 2052, Australia
ANDREW P. BASSOM
Affiliation:
School of Mathematics and Statistics, University of Western Australia, Crawley 6009, Australia

Abstract

The linear stability of the Stokes layers generated between a pair of synchronously oscillating parallel plates is investigated. The disturbance equations were studied using Floquet theory and pseudospectral numerical methods used to solve the resulting system. Neutral curves for an extensive range of plate separations were obtained and when the plate separation is large compared to the Stokes layer thickness the linear stability properties of the Stokes layer in a semi-infinite fluid were recovered. A detailed analysis of the damping rates of disturbances to the basic flow provides a plausible explanation of why several previous studies of the problem have failed to detect any linear instability of the flow.

To compare more faithfully with experimental work the techniques used for the channel problem were modified to allow the determination of neutral curves for axisymmetric disturbances to purely oscillatory flow in a circular pipe. Critical Reynolds numbers for the pipe flow tended to be smaller than their counterparts for the channel case but the smallest critical value was still almost twice the experimentally reported result.

Type
Papers
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)