Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T19:28:37.293Z Has data issue: false hasContentIssue false

Convection in the earth's mantle: towards a numerical simulation

Published online by Cambridge University Press:  29 March 2006

D. P. Mckenzie
Affiliation:
Department of Geodesy and Geophysics, University of Cambridge
J. M. Roberts
Affiliation:
Department of Geodesy and Geophysics, University of Cambridge
N. O. Weiss
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

Plate tectonics provides a remarkably accurate kinematic description of the motion of the earth's crust but a fully dynamical theory requires an understanding of convection in the mantle. Thus the properties of plates and of the mantle must be related to a systematic study of convection. This paper reviews both the geophysical information and the fluid dynamics of convection in a Boussinesq fluid of infinite Prandtl number. Numerical experiments have been carried out on several simple two-dimensional models, in which convection is driven by imposed horizontal temperature gradients or else by heating either internally or from below. The results are presented and analysed in terms of simple physical models. Although the computations are highly idealized and omit variation of viscosity and other major features of mantle convection, they can be related to geophysical measurements. In particular, the external gravity field depends on changes in surface elevation; this suggests an observational means of investigating convection in the upper mantle.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, S. & Fujisawa, H. 1966 Olivine–Spinel transition in system Mg2SiO4–Fe2SiO4 at 800°C. Earth Planet. Sci. Lett. 1, 237240.Google Scholar
Akimoto, S. & Fujisawa, H. 1968 Olivine–Spinel solid solution equilibrium in the system Mg2SiO4–Fe2SiO4. J. Geophys. Res. 73, 14671479.Google Scholar
Allan, D. W., Thompson, W. B. & Weiss, N. O. 1967 Convection in the Earth's Mantle. In Mantles of the Earth & Terrestrial Planets (ed. S. K. Runcorn), p. 507. Wiley.
Anderson, D. L., Sammis, C. & Jordan, T. 1972 Composition of the Mantle and Core. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 41. McGraw-Hill.
Anderson, R. N., McKenzie, D. P. & Sclater, J. G. 1973 Gravity, bathymetry and convection within the earth Earth Planet. Sci. Lett. 18, 391407.Google Scholar
Archambeau, C. B., Flinn, E. A. & Lambert, D. G. 1969 Fine structure of the upper mantle J. Geophys. Res. 74, 58255865.Google Scholar
Ave'Lallemant, H. G. & Carter, N. L. 1970 Syntectonic recrystallization of Olivine and modes of flow in the Upper Mantle Bull. Geol. Soc. Am. 81, 22032220.Google Scholar
Banks, R. J. 1969 Geomagnetic variations and the electrical conductivity of the upper mantle Geophys. J. Roy. Astr. Soc. 17, 457487.Google Scholar
Barazangi, M. & Dorman, J. 1969 World seismicity maps compiled from ESSA Coast and Geodetic survey epicenter data, 1961–1967. Bull Seism Soc. Am. 59, 369.Google Scholar
Beardsley, R. C. & Festa, J. F. 1972 A numerical model of convection driven by a surface stress and non-uniform horizontal heating J. Phys. Ocean. 2, 444.Google Scholar
Birch, F. 1952 Elasticity and constitution of the Earth's Interior J. Geophys. Res. 57, 227289.Google Scholar
Brindley, J. 1967 Thermal convection in horizontal fluid layers J. Inst. Maths. Applies. 3, 313343.Google Scholar
Brune, J. & Dorman, J. 1963 Surface waves and earth structure in the Canadian Shield Bull. Seism. Soc. Am. 53, 167200.Google Scholar
Bullard, E. C., Everett, J. E. & Smith, A. G. 1965 The fit of the Continents around the Atlantic. Phil. Trans. Roy. Soc. A 258, 41.Google Scholar
Busse, F. H. 1967 On the stability of two-dimensional convection in a layer heated from below J. Math. & Phys. 46, 140.Google Scholar
Busse, F. H. & Schubert, G. 1971 Convection in a fluid with two phases J. Fluid Mech. 46, 801.Google Scholar
Busse, F. H. & Whitehead, J. A. 1971 Instabilities of convection rolls in a high Prandtl number fluid J. Fluid Mech. 47, 305.Google Scholar
Carter, N. L. & Ave'Lallemant, H. G. 1970 High temperature flow of Dunite and Peridotite Bull. Geol. Soc. Am. 81, 21812202.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, chap. 2. Clarendon Press.
Chase, C. G. 1972 The N plate problem of plate tectonics Geophys. J. Roy. Astr. Soc. 29, 117.Google Scholar
Cleary, J. R. 1967 Azimuthal variation to the Longshot source term Earth. Planet. Sci. Lett. 3, 2937.Google Scholar
Davies, D. & Julian, B. R. 1972 A study of short period P-wave signals from Longshot Geophys. J. Roy. Astr. Soc. 29, 185.Google Scholar
Davies, D. & McKenzie, D. P. 1969 Seismic travel-time residuals and plates Geophys. J. Roy. Astr. Soc. 18, 5163.Google Scholar
Dewey, J. F. & Bird, J. M. 1971 Origin and emplacement of the Ophiolite suite: Appalachian Ophiolites in Newfoundland. J. Geophys. Res. 76, 31793206.Google Scholar
Elsasser, W. M. 1969 Convection and stress propagation in the Upper Mantle. In The Applications of Modern Physics to the Earth and Planetary Interiors (ed. S. K. Runcorn), p. 223. Interscience.
Engel, A. E. J. & Engel, C. G. 1970 Mafic and Ultramafic rocks. In The Sea, vol. 4 (ed. A. E. Maxwell), p. 465. Interscience.
Foster, T. D. 1969 The effect of initial conditions and lateral boundaries on convection J. Fluid Mech. 37, 81.Google Scholar
Foster, T. D. 1971 Intermittent convection Geophys. Fluid Dyn. 2, 201.Google Scholar
Fromm, J. E. 1965 Numerical solution of the nonlinear equations for a heated fluid layer Phys. Fluids, 8, 1757.Google Scholar
Fujisawa, H., Fujii, N., Mizutani, H., Kanamori, H. & Akimoto, S. 1968 Thermal diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at high pressures and temperatures. J. Geophys. Res. 73, 47274733.Google Scholar
Fukao, Y. 1969 On the radiative heat transfer and the thermal conductivity in the Upper Mantle Bull. Earth. Res. Inst. 47, 54969.Google Scholar
Fukao, Y., Mizutani, H. & Uyeda, S. 1968 Optical absorption spectra at high temperatures and radiative thermal conductivity of Olivines Phys. Earth Planet. Interiors, 1, 5762.Google Scholar
Gaposchkin, E. M. & Lambeck, K. 1971 Earth's gravity field to sixteenth degree and station coordinates from satellite and terrestrial data J. Geophys. Res. 76, 48444883.Google Scholar
Gast, P. W. 1968 Trace element fractionation and the origin of tholeiitic and alkaline magma types Geoch. Cosmochim. Acta, 32, 1057.Google Scholar
Gast, P. W. 1972 The chemical composition of the Earth, the Moon and Chondritic meteorites. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 19. McGraw-Hill.
Gilbert, F. 1972 Inverse problems for the Earth's normal modes. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 125. McGraw-Hill.
Goetze, C. 1971 High temperature rheology of westerly granite J. Geophys. Res. 76, 1223.Google Scholar
Goldreich, P. & Toomre, A. 1969 Some remarks on polar wandering J. Geophys. Res. 74, 2555.Google Scholar
Goldstein, H. 1950 Classical Mechanics. Addison-Wesley.
Goldstein, R. J. & Graham, D. J. 1969 Stability of a fluid layer with zero shear boundaries Phys. Fluids, 12, 1133.Google Scholar
Gordon, R. B. 1965 Diffusion creep in the Earth's Mantle J. Geophys. Res. 70, 24132417.Google Scholar
Gordon, R. B. 1971 Observations of crystal plasticity under high pressure with applications to the earth's mantle J. Geophys. Res. 76, 12481254.Google Scholar
Griggs, D. T. 1972 The sinking lithosphere and the focal mechanism of deep earthquakes. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 361. McGraw-Hill.
Gutenberg, B. 1959 Physics of the Earth's Interior. Academic.
Hales, A. L. 1936 Convection currents in the Earth Mon. Not. Roy. Astr. Soc., Geophys. Suppl. 3, 372.Google Scholar
Hales, A. L. & Herrin, E. 1972 Travel times of seismic waves. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 172. McGraw-Hill.
Hanks, T. C. 1971 The Kuril Trench – Hokkaido Rise system: large shallow earthquakes and simple models of deformation. Geophys. J. Roy. Astr. Soc. 23, 173.Google Scholar
Hendershott, M. C. 1972 The effects of solid Earth deformation on global ocean tides Geophys. J. Roy. Astr. Soc. 29, 389.Google Scholar
Hendershott, M. C. & Munk, W. 1970 Tides Ann. Rev. Fluid Mech. 2, 205224.Google Scholar
Hess, H. H. 1962 History of the ocean basins. Petrologic Studies: Buddington Memorial Volume, pp. 599620. Geol. Soc. Am.
Howard, L. N. 1966 Convection at high Rayleigh numbers. In Proc. 11th Int. Congr. Appl. Mech. Munich, 1964 (ed. H. Görtler), p. 1109. Springer.
Howard, L. N., Malkus, W. V. R. & Whitehead, J. A. 1970 Self-convection of floating heat sources: a model for Continental Drift. Geophys. Fluid Dyn. 1, 123142.Google Scholar
Hoyle, F. 1972 The history of the Earth Quart. J. Roy. Astr. Soc. 13, 328.Google Scholar
Hoyle, F. & Narlikar, J. V. 1972 Cosmological models in a conformably invariant gravitational theory. II. A new model Mon. Not. Roy. Astr. Soc. 155, 323.Google Scholar
Hsui, A. T., Turcotte, D. L. & Torrance, K. E. 1972 Finite-amplitude thermal convection within a self-gravitating fluid sphere Geophys. Fluid Dyn. 3, 3544.Google Scholar
Huppert, H. E. 1971 A note on the Howard–Malkus–Whitehead floating heat sources Geophys. Fluid Dyn. 2, 317322.Google Scholar
Isacks, B. L. & Molnar, P. 1969 Mantle earthquake mechanisms and the sinking of the Lithosphere Nature, 223, 1121.Google Scholar
Isacks, B. L. & Molnar, P. 1971 Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of Mantle earthquakes Rev. Geophys. 9, 103174.Google Scholar
Isacks, B. L., Oliver, J. & Sykes, L. R. 1968 Seismology and the new global tectonics J. geophys. Res. 73, 58555899.Google Scholar
Jeffreys, H. 1963 On the hydrostatic theory of the figure of the Earth, Geophys. J. Roy. Astr. Soc. 8, 196.Google Scholar
Jeffreys, H. 1971 The Earth, 5th ed. Cambridge University Press.
Johnson, L. R. 1967 Array measurements of P velocities in the upper mantle J. Geophys. Res. 72, 63096325.Google Scholar
Johnson, L. R. 1969 Array measurements of P velocities in the lower mantle Bull. Seism. Soc. Am. 59, 9731008.Google Scholar
Jolley, L. B. W. 1961 Summation of Series. Dover.
Kanamori, H., Fujii, N. & Mizutani, H. 1968 Thermal diffusivity measurement of rock-forming minerals from 400°K to 1100°K J. Geophys. Res. 73, 595605.Google Scholar
Kaula, W. M. 1971 Dynamical aspects of lunar origin Rev. Geophys. Space Phys. 9, 217238.Google Scholar
Knopoff, L. 1964 The convection current hypothesis Rev. Geophys. 2, 89.Google Scholar
Krishnamurti, R. 1968a Finite amplitude convection with changing mean temperature. Part 1. Theory J. Fluid Mech. 33, 445.Google Scholar
Krishnamurti, R. 1968b Finite amplitude convection with changing mean temperature. Part 2. An experimental test of theory J. Fluid Mech. 33, 457.Google Scholar
Krishnamurti, R. 1970a On the transition to turbulent convection. Part 1. The transition from two- to three-dimensional flow J. Fluid Mech. 42, 295.Google Scholar
Krishnamurti, R. 1970b On the transition to turbulent convection. Part 2. The transition to time-dependent flow J. Fluid Mech. 42, 309.Google Scholar
Kulacki, F. A. & Goldstein, R. J. 1972 Thermal convection in a horizontal fluid layer with uniform volumetric energy sources J. Fluid Mech. 55, 271.Google Scholar
Lambeck, K. 1972 Gravity anomalies over oceanic ridges Geophys. J. Roy. Astr. Soc. 30, 37.Google Scholar
Langseth, M. G., Le Pichon, X. & Ewing, M. 1966 Crustal structure of the mid-ocean ridges, 5. Heat flow through the Atlantic Ocean floor and convection currents J. Geophys. Res. 71, 53215355.Google Scholar
Le Pichon, X. 1968 Sea-floor spreading and Continental Drift J. Geophys. Res. 73, 3661.Google Scholar
Lipps, F. B. & Somerville, R. C. J. 1971 Dynamics of variable wavelength in finiteamplitude Bénard convection Phys. Fluids, 14, 759765.Google Scholar
Lliboutry, L. 1969 Sea floor spreading, Continental drift and lithosphere sinking with an asthenosphere at melting point J. Geophys. Res. 74, 6525.Google Scholar
Macdonald, G. J. F. 1963 The deep structure of oceans and continents Rev. Geophys. 1, 587665.Google Scholar
Mckenzie, D. P. 1966 The viscosity of the Lower Mantle J. Geophys. Res. 71, 39954010.Google Scholar
Mckenzie, D. P. 1967a Some remarks on heat flow and gravity anomalies J. Geophys. Res. 72, 6171.Google Scholar
Mckenzie, D. P. 1967b The viscosity of the Mantle Geophys. J. Roy. Astr. Soc. 14, 297.Google Scholar
Mckenzie, D. P. 1968a The influence of the boundary conditions and rotation on convection in the Earth's Mantle Geophys. J. Roy. Astr. Soc. 15, 457500.Google Scholar
Mckenzie, D. P. 1968b The geophysical importance of high temperature creep. In The History of the Earth's Crust, Proc. NASA Conf., p. 28. Princeton University Press.
Mckenzie, D. P. 1969 Speculations on the causes and consequences of plate motions Geophys. J. Roy. Astr. Soc. 18, 1.Google Scholar
Mckenzie, D. P. 1970 Temperature and potential temperature beneath island arcs Tectonophys. 10, 357.Google Scholar
Mckenzie, D. P. 1972 Plate tectonics. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 323. McGraw-Hill.
Mckenzie, D. P. & Parker, R. L. 1967 The North Pacific: an example of tectonics on a sphere. Nature, 216, 12761280.Google Scholar
Mckenzie, D. P. & Sclater, J. G. 1969 Heat flow in the Eastern Pacific and sea floor spreading Bull. Volcanologique, 33, 101118.Google Scholar
Mckenzie, D. P. & Sclater, J. G. 1971 The evolution of the Indian Ocean since the late Cretaceous Geophys. J. Roy. Astr. Soc. 25, 437528.Google Scholar
Malkus, W. V. R. 1954 Discrete transitions in turbulent convection. Proc. Roy. Soc. A 225, 185.Google Scholar
Melson, W. G. & Thompson, G. 1971 Petrology of a transform fault zone and adjacent ridge segments. Phil. Trans. Roy. Soc A 268, 423441.Google Scholar
Mitronovas, W., Isacks, B. & Seeber, L. 1969 Earthquake locations and seismic wave propagation in the upper 250 km of the Tonga island arc Bull. Seism. Soc. Am. 59, 11151135.Google Scholar
Mizutani, H., Hamano, Y., Ida, Y. & Akimoto, S. 1970 Compressional wave velocities of Fayalite, Fe2SiO4 Spinel, and Coesite. J. Geophys. Res. 75, 27412747.Google Scholar
Moore, D. R., Peckover, R. S. & Weiss, N. O. 1974 Difference methods for timedependent two-dimensional convection. Comp. Phys. Comm. 7, in press.Google Scholar
Moore, D. R. & Weiss, N. O. 1973 Two-dimensional Rayleigh–Bénard convection J. Fluid Mech. 58, 289312.Google Scholar
Morgan, W. J. 1968 Rises, trenches, great faults and crustal blocks. J. Geophys. Res. 73, 1959–1982.Google Scholar
Morgan, W. J. 1971 Convection plumes in the lower mantle Nature, 230, 42.Google Scholar
Munk, W. 1968 Once again – tidal friction Quart. J. Roy. Astr. Soc. 9, 352375.Google Scholar
Munk, W. H. & MacDonald, G. J. F. 1960 The Rotation of the Earth. Cambridge University Press.
O'Connell, R. J. 1971 Pleistocene glaciation and the viscosity of the lower mantle Geophys. J. Roy. Astr. Soc. 23, 299327.Google Scholar
Oldenburg, D. W. & Brune, J. N. 1972 Ridge transform fault spreading pattern in freezing wax Science, 178, 301.Google Scholar
Oliver, J. & Isacks, B. 1967 Deep earthquake zones, anomalous structures in the upper mantle and the lithosphere J. Geophys. Res. 72, 42594275.Google Scholar
Oxburgh, E. R. & Turcotte, D. L. 1968 Mid ocean ridges and geotherm distribution during mantle convection J. Geophys. Res. 73, 2643.Google Scholar
Parker, R. L. 1971 The inverse problem of electrical conductivity in the mantle Geophys. J. Roy. Astr. Soc. 22, 121138.Google Scholar
Peckover, R. S. 1972 Convection in the presence of magnetic fields. Ph.D. thesis, University of Cambridge.
Pekeris, C. L. 1935 Thermal convection in the interior of the Earth Mon. Not. Roy. Astr. Soc., Geophys. Suppl. 3, 343.Google Scholar
Plows, W. H. 1968 Some numerical results for two-dimensional steady laminar Bénard convection Phys. Fluids, 11, 1593.Google Scholar
Prager, W. 1961 Introduction to Mechanics of Continua. Ginn.
Rayleigh, C. B. & Kirby, S. H. 1970 Creep in the Upper Mantle Am. Mineral., Spec. Pap. 3, 113.Google Scholar
Read, W. T. 1953 Dislocations in Crystals McGraw-Hill.
Ringwood, A. E. 1972a Mineralogy of the deep mantle: current status and future developments. In The Nature of the Solid Earth (ed. E. C. Robertson), p. 67. McGraw-Hill.
Ringwood, A. E. 1972b Phase transformations and mantle dynamics Earth. Planet. Sci. Lett. 14, 233.Google Scholar
Ringwood, A. E. & Major, A. 1970 The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures. Phys. Earth. Planet. Interiors, 3, 89108.Google Scholar
Roberts, K. V. & Weiss, N. O. 1966 Convective difference schemes Math. Comp. 20, 272.Google Scholar
Roberts, P. H. 1967 Convection in horizontal layers with internal heat generation. Theory J. Fluid Mech. 30, 33.Google Scholar
Rossby, H. T. 1969 A study of Bénard convection with and without rotation J. Fluid Mech. 36, 309335.Google Scholar
Runcorn, S. K. 1965 Changes in the convection pattern in the Earth's mantle and continental drift: evidence for a cold origin of the Earth. Phil Trans. Roy. Soc. A 258, 228.Google Scholar
Schilling, J. G. 1971 Sea-floor evolution: rare-earth evidence. Phil. Trans. Roy. Soc A 268, 661706.Google Scholar
SchlÜter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection J. Fluid Mech. 23, 129.Google Scholar
Schubert, G. & Turcotte, D. L. 1971 Phase changes and Mantle convection J. Geophys-Res. 76, 1424.Google Scholar
Schwiderski, E. W. & Schwab, H. J. A. 1971 Convection experiments with electrolytically heated fluid layers J. Fluid Mech. 48, 703.Google Scholar
Sclater, J. G., Anderson, R. N. & Bell, M. L. 1971 The elevation of ridges and the evolution of the central eastern Pacific J. Geophys. Res. 76, 78887915.Google Scholar
Sclater, J. G. & Francheteau, J. 1970 The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper Mantle of the Earth Geophys. J. Roy. Astr. Soc. 20, 509.Google Scholar
Sherby, O. D. & Burke, P. M. 1968 Mechanical behaviour of crystalline solids at elevated temperatures. In Progress in Materials Science (ed. B. Chalmers & W. Hume-Rothery), p. 325. Pergamon.
Skinner, B. J. 1966 Thermal expansion. In Handbook of Physical Constants (ed. S. P. Clark), p. 75. Geol. Soc. Am. Memoir no. 97.
Slater, J. C. 1939 Introduction to Chemical Physics. McGraw-Hill.
Somerville, R. C. J. 1967 A nonlinear spectral model of convection in a fluid unevenly heated from below J. Atmos. Sci. 24, 665676.Google Scholar
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 Thermal instability in a horizontal fluid layer: effect of boundary conditions and nonlinear temperature profile. J. Fluid Mech. 18, 513.Google Scholar
Spiegel, E. A. 1971 Convection in Stars. I. Basic Boussinesq convection Ann. Rev. Astron. Astrophys. 9, 323.Google Scholar
Straus, J. M. 1972 Finite amplitude doubly diffusive convection J. Fluid Mech. 56, 353.Google Scholar
Sykes, L. R. 1966 The seismicity and deep structure of island arcs J. Geophys. Res. 71, 29813006.Google Scholar
Talwani, M. & Le Pichon, X. 1969 Gravity field over the Atlantic Ocean. In The Earth's Crust and Upper Mantle (ed. P. J. Hart), p. 341. Am. Geophys. Un. Monograph 13.
Talwani, M., Windisch, C. C. & Langseth, M. G. 1971 Rekyjanes Ridge crest: a detailed geophysical study. J. Geophys. Res. 76, 473517.Google Scholar
Thirlby, R. 1970 Convection in an internally heated layer J. Fluid Mech. 44, 673.Google Scholar
ToksÖz, M. N., Minear, J. W. & Julian, B. R. 1971 Temperature field and geophysical effects of a downgoing slab J. Geophys. Res. 76, 11131138.Google Scholar
Torrance, K. E. & Turcotte, D. L. 1971 Thermal convection with large viscosity variations J. Fluid Mech. 47, 113.Google Scholar
Tozer, D. C. 1965 Heat transfer and convection currents. Phil. Trans. Roy. Soc A 258, 252271.Google Scholar
Tritton, D. J. & Zarraga, M. N. 1967 Convection in horizontal layers with internal heat generation. Experiments J. Fluid Mech. 30, 21.Google Scholar
Turcotte, D. L. & Oxburgh, E. R. 1967 Finite amplitude convection cells and continental drift J. Fluid Mech. 28, 2942.Google Scholar
Turcotte, D. L. & Oxburgh, E. R. 1969 Convection in a mantle with variable physical properties J. Geophys. Res. 74, 1458.Google Scholar
Turcotte, D. L. & Oxburgh, E. R. 1972 Mantle convection and the new global tectonics Ann. Rev. Fluid Mech. 4, 33.Google Scholar
Turner, J. S. 1973 Convection in the mantle: a laboratory model with temperature-dependent viscosity. Earth Planet. Sci. Lett. 17, 369.Google Scholar
Vening Meinesz, F. A. 1962 Thermal convection in the Earth's Mantle. In Continental Drift, (ed. S. K. Runcorn), pp. 145176. Academic.
Verhoogen, J. 1965 Phase changes and convection in the Earth's Mantle. Phil. Trans. Roy. Soc A 258, 276283.Google Scholar
Veronis, G. 1966 Large amplitude Bénard convection J. Fluid Mech. 26, 49.Google Scholar
Von Herzen, R. P. & Lee, W. H. K. 1969 Heat flow in oceanic regions. In The Earth's Crust and Upper Mantle (ed. P. J. Hart), p. 88. Am. Geophys. Un. Monograph 13.
Weertman, J. 1970 Creep strength in the Earth's Mantle Rev. Geophys. 8, 145168.Google Scholar
Wetherill, G. W. 1966 Radioactive decay constants and energies. In Handbook of Physical Constants (ed. S. P. Clark), p. 513. Geol. Soc. Am. Memoir no. 97.CrossRef
Whitehead, J. A. 1972 Moving heaters as a model of continental drift Phys. Earth Planet. Interiors, 5, 199212.Google Scholar
Willis, G. E. & Deardorff, J. W. 1970 The oscillatory motions of Rayleigh convection J. Fluid Mech. 44, 661.Google Scholar
Willis, G. E., Deardorff, J. W. & Somerville, R. C. J. 1972 Roll-diameter dependence in Rayleigh convection and its effect upon heat flux J. Fluid Mech. 54, 351.Google Scholar
Wilson, J. T. 1963 A possible origin of the Hawaiian Islands Can. J. Phys. 41, 863.Google Scholar
Wilson, J. T. 1965 A new class of faults and their bearing on continental drift Nature, 207, 343347.Google Scholar
Woollard, G. P. 1969 Regional variations in gravity. In The Earth's Crust and Upper Mantle (ed. P. J. Hart), p. 320. Geophys. Un. Monograph no. 13.
Zhivago, A. V. 1966 Bathymetric chart (Indian sector of the southern ocean). Atlas of the Antarctic, p. 190. Moscow: Akad. Nauk.