Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T17:48:38.851Z Has data issue: false hasContentIssue false

Immune recognition of Onchocerca volvulus proteins in the human host and animal models of onchocerciasis

Published online by Cambridge University Press:  10 April 2014

T.K. Manchang*
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany Institute of Agricultural Research for Development, Veterinary Research Laboratory, Wakwa Regional Center, PO Box 65, Ngaoundere, Cameroon
I. Ajonina-Ekoti
Affiliation:
Institute of Animal Physiology, University of Münster, Hindenburgplatz 55, 48143Münster, Germany
D. Ndjonka
Affiliation:
Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
A. Eisenbarth
Affiliation:
Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, D-72076Tübingen, Germany
M.D. Achukwi
Affiliation:
Institute of Agricultural Research for Development, Veterinary Research Laboratory, Wakwa Regional Center, PO Box 65, Ngaoundere, Cameroon
A. Renz
Affiliation:
Institute of Evolution and Ecology, Department of Comparative Zoology, University of Tübingen, Auf der Morgenstelle 28, D-72076Tübingen, Germany
N.W. Brattig
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
E. Liebau
Affiliation:
Institute of Animal Physiology, University of Münster, Hindenburgplatz 55, 48143Münster, Germany
M. Breloer
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany

Abstract

Onchocerca volvulus is a tissue-dwelling, vector-borne nematode parasite of humans and is the causative agent of onchocerciasis or river blindness. Natural infections of BALB/c mice with Litomosoides sigmodontis and of cattle with Onchocerca ochengi were used as models to study the immune responses to O. volvulus-derived recombinant proteins (OvALT-2, OvNLT-1, Ov103 and Ov7). The humoral immune response of O. volvulus-infected humans against OvALT-2, OvNLT-1 and Ov7 revealed pronounced immunoglobulin G (IgG) titres which were, however, significantly lower than against the lysate of O. volvulus adult female worms. Sera derived from patients displaying the hyperreactive form of onchocerciasis showed a uniform trend of higher IgG reactivity both to the single proteins and the O. volvulus lysate. Sera derived from L. sigmodontis-infected mice and from calves exposed to O. ochengi transmission in a hyperendemic area also contained IgM and IgG1 specific for O. volvulus-derived recombinant proteins. These results strongly suggest that L. sigmodontis-specific and O. ochengi-specific immunoglobulins elicited during natural infection of mice and cattle cross-reacted with O. volvulus-derived recombinant antigens. Monitoring O. ochengi-infected calves over a 26-month period, provided a comprehensive kinetic of the humoral response to infection that was strictly correlated with parasite load and occurrence of microfilariae.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achukwi, M.D., Daiber, W.H., Renz, A., Wahl, G. & Wanji, S. (1994) Prepatency period and some aspects of the epizootiology of O. ochengi infestation in cattle in the Adamawa plateau, Cameroon. Parasite 1 (Suppl.), S10S12.Google Scholar
Achukwi, M.D., Harnett, W. & Renz, A. (2000) Onchocerca ochengi transmission dynamics and the correlation of O. ochengi microfilaria density in cattle with the transmission potential. Veterinary Research 31, 611621.Google Scholar
Achukwi, M.D., Harnett, W., Bradley, J. & Renz, A. (2004) Onchocerca ochengi acquisition in Zebu Gudali cattle exposed to natural transmission: parasite population dynamics and IgG antibody subclass responses to Ov10/Ov11 recombinant antigens. Veterinary Parasitology 122, 3549.Google Scholar
Achukwi, M.D., Harnett, W., Enyong, P. & Renz, A. (2007) Successful vaccination against Onchocerca ochengi infestation in cattle using live Onchocerca volvulus infective larvae. Parasite Immunology 29, 113116.Google Scholar
Allen, J.E. & Maizels, R.M. (2011) Diversity and dialogue in immunity to helminths. Nature Reviews Immunology 11, 375388.CrossRefGoogle ScholarPubMed
Allen, J.E., Adjei, O., Bain, O., Hoerauf, A., Hoffmann, W.H., Makepeace, B.L., Schulz-Key, H., Tanya, V.N., Trees, A.J., Wanji, S. & Taylor, D.W. (2008) Of mice, cattle, and humans: the immunology and treatment of river blindness. PLoS Neglected Tropical Diseases 2, e217.Google Scholar
Al-Qaoud, K.M., Taubert, A., Zahner, H., Fleischer, B. & Hoerauf, A. (1997) Infection of BALB/c mice with the filarial nematode Litomosoides sigmodontis: Role of CD4+ cells in controlling larval development. Infection and Immunity 65, 24572461.CrossRefGoogle ScholarPubMed
Anderson, J., Fuglsang, H., Hamilton, P.J. & de Marshall, T.F. (1974) Studies on onchocerciasis in the United Cameroon Republic. I. Comparison of populations with and without Onchocerca volvulus . Transactions of the Royal Society of Tropical Medicine and Hygiene 68, 190208.CrossRefGoogle ScholarPubMed
Bain, O., Wanji, S., Voung, P.N., Maréchal, P., Le Goff, L. & Petit, G. (1994) Larval biology of six filariae of the subfamily Onchocercinae in a vertebrate host. Parasite 1, 242254.Google Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Bradley, J.E., Gregory, W.F., Bianco, A.E. & Maizels, R.M. (1989) Biochemical and immunochemical characterisation of a 20-kilodalton complex of surface-associated antigens from adult Onchocerca gutturosa filarial nematodes. Molecular and Biochemical Parasitolology 34, 197208.Google Scholar
Brattig, N.W. (2004) Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria. Microbes and Infections 6, 113128.Google Scholar
Brattig, N.W., Lepping, B., Timmann, C., Buttner, D.W., Marfo, Y., Hamelmann, C. & Horstmann, R.D. (2002) Onchocerca volvulus-exposed persons fail to produce interferon-gamma in response to O. volvulus antigen but mount proliferative responses with interleukin-5 and IL-13 production that decrease with increasing microfilarial density. Journal of Infectious Diseases 185, 11481154.CrossRefGoogle Scholar
Butler, J.E. (1999) Immunoglobulins and immunocytes in animal milks. pp. 15311554 in Ogra, P.L. (Ed.) Mucisal immunology. New York, Academic Press.Google Scholar
Clos, J. & Brandau, S. (1994) pJC20 and pJC40 - two high-copy number vectors for T7 RNA polymerase- dependent expression of recombinant genes in E. coli . Protein Expression and Purification 5, 133137.Google Scholar
Eisenbarth, A., Ekale, D., Hildebrandt, J., Achukwi, M.D., Streit, A. & Renz, A. (2013) Molecular evidence of 'Siisa form', a new genotype related to Onchocerca ochengi in cattle from North Cameroon. Acta Tropica 127, 261265.Google Scholar
Estes, D.M. (1996) Differentiation of B cells in the bovine. Role of cytokines in immunoglobulin isotype expression. Veterinary Immunology and Immunopathology 54, 6167.Google Scholar
Frank, G.R., Wisnewski, N., Brandt, K.S., Carter, C.R., Jennings, N.S. & Selkirk, M.E. (1999) Molecular cloning of the 22-24 kDa excretory-secretory 22U protein of Dirofilaria immitis and other filarial nematode parasites. Molecular and Biochemical Parasitology 98, 297302.Google Scholar
Graham, S.P., Lustigman, S., Trees, A.J. & Bianco, A.E. (2000) Onchocerca volvulus: Comparative analysis of antibody responses to recombinant antigens in two animal models of onchocerciasis. Experimental Parasitology 94, 158162.Google Scholar
Graham, S.P., Trees, A.J., Collins, R.A., Moore, D.M., Guy, F.M., Taylor, M.J. & Bianco, A.E. (2001) Down-regulated lymphoproliferation coincides with parasite maturation and with the collapse of both gamma interferon and interleukin-4 responses in a bovine model of onchocerciasis. Infection and Immunity 69, 43134319.Google Scholar
Gregory, W.F., Atmadjia, A.K., Allen, J.E. & Maizels, R.M. (2000) The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage specific candidate vaccine antigens for filariasis. Infection and Immunity 68, 41744179.Google Scholar
Grieve, R.B. (1990) Immunologic relevance of the cuticle and epicuticle of larval Dirofilaria immitis and Toxocara canis . Acta Tropica 47, 399402.Google Scholar
Harnett, W., Grainger, M., Worms, M.J. & Parkhouse, R.M. (1989) Evaluation of the potential of excretions-secretions (E-S) of Litomosoides carinii to substitute for human filarial E-S. Parasitology Research 76, 3944.CrossRefGoogle Scholar
Hock, B., Wahl, G., Enyong, P., Lueder, C.G.K., Harnett, W. & Renz, A. (1992) Serological recognition of specific and crossreactive antigens of Onchocerca ochengi and Onchocerca. volvulus by infected cattle and humans. Tropical Medicine and Parasitology 43, 206207.Google Scholar
Johnson, E.H., Lustigman, S., Kass, P.H., Irvine, M., Browne, J. & Prince, A.M. (1995) Onchocerca volvulus: A comparative study of in vitro neutrophil killing of microfilariae and humoral responses in infected and endemic normals. Experimental Parasitology 81, 919.Google Scholar
Karam, M., Schulz-Key, H. & Remme, J. (1987) Population dynamics of Onchocerca volvulus after 7 to 8 years of vector control in West Africa. Acta Tropica 44, 445457.Google Scholar
Korten, S., Hoerauf, A., Kaifi, J.T. & Buttner, D.W. (2011) Low levels of transforming growth factor-beta (TGF-beta) and reduced suppression of Th2-mediated inflammation in hyperractive human onchocerciasis. Parasitology 138, 3545.Google Scholar
Kuo, Yien-Ming & Bianco, A.E. (1995) Stage-specific and species cross-reactive antibody responses in experimental Onchocerca infections of cattle. American Journal of Tropical Medicine and Hygiene 53, 624632.Google Scholar
Kuzura, J.W., Nutman, T.B. & Greene, B.M. (1993) Filariasis: immunology and molecular biology of parasitic infections. 3rd edn. pp. 473495. Boston, Massachusetts, Blackwell Scientific Publications.Google Scholar
Liebau, E., Hoppner, J., Muhlmeister, M., Burmeister, C., Luersen, K., Perbandt, M., Schmetz, C., Buttner, D. & Brattig, N. (2008) The secretory omega-class glutathione transferase OvGST3 from the human pathogenic parasite Onchocerca volvulus . FEBS Journal 275, 34383453.Google Scholar
Lok, J.B. & Abraham, D. (1992) Animal models for the study of immunity in human filariasis. Parasitology Today 8, 168171.Google Scholar
Lustigman, S., Brotman, B., Huima, T. & Prince, A.M. (1991) Characterization of an Onchocerca volvulus cDNA clone encoding a genus specific antigen present in infective larvae and adult worms. Molecular and Biochemical Parasitology 45, 6576.Google Scholar
Lustigman, S., Brotman, B., Huima, T., Prince, A.M. & McKerrow, J.H. (1992a) Molecular cloning and characterisation of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus . Journal of Biological Chemistry 267, 1733917346.Google Scholar
Lustigman, S., Brotman, B., Johnson, E.H., Smith, A.B., Huima, T. & Prince, A.M. (1992b) Identification and characterisation of an Onchocerca volvulus cDNA clone encoding a microfilarial surface-associated antigen. Molecular and Biochemical Parasitology 50, 7994.CrossRefGoogle ScholarPubMed
Madhumathi, J., Prince, P.R., Nageswara Rao, D. & Kaliraj, P. (2010) Dominant T-cell epitopes of filarial BmALT-2 and their cytokine profile in BALB/c mice. Parasite Immunology 32, 760763.Google Scholar
Maréchal, P., Petit, G., Diagne, M., Taylor, D.W. & Bain, O. (1994) Use of the Litomosoides sigmodontis–mouse model in development of an Onchocerca vaccine. II. L. sigmodontis in the BALB/c mouse: vaccination experiments; preliminary immunological studies. Parasite 1, 3132.Google Scholar
Maréchal, P., Le Goff, L., Hoffman, W., Rapp, J., Oswald, I.P., Ombrouck, C., Taylor, D.W., Bain, O. & Petit, G. (1997) Immune response to the filaria Litomosoides sigmodontis in susceptible and resistant mice. Parasite Immunology 19, 273279.Google Scholar
Mpagi, J.L., Buttner, D.W., Tischendorf, F.W., Erttmann, K.D. & Brattig, N.W. (2000) Humoral responses to a secretory Onchocerca volvulus protein: differences in the pattern of antibody isotypes to recombinant Ov20/OvS1 in generalized and hyperreactive onchocerciasis. Parasite Immunology 22, 455460.CrossRefGoogle ScholarPubMed
Munirathinam, G., Kakatura, V.N.R., Yi-Xun, He, Pankaj, K.M., Nutman, T.B., Kaliraj, P. & Ramaswamy, K. (2004) Novel phage display-based substractive screening to identify vaccine candidates of Brugia malayi . Infection and Immunity 46, 47074715.Google Scholar
Petit, G.M., Diagne, P., Marachal, D., Owen, D., Taylor, D.W. & Bain, O. (1992) Maturation of the filarial Litomosoides sigmodontis in BALB/c mice: comparative susceptibility of nine inbred strains. Annales de Parasitologie Humaine et Comparée 67, 144150.Google Scholar
Plaiser, A.P., Van Oortmarssen, G.J., Remme, J. & Habbema, J.D. (1991) The reproductive lifespan of Onchocerca volvulus on West African savanna. Acta Tropica 48, 271.Google Scholar
Ramanchandran, C.P. (1993) Improved immunodiagnostic tests to monitor onchocerciasis control programmes – a multicenter effort. Parasitolology Today 9, 7679.Google Scholar
Ramachandran, S., Kumar, M.P., Rami, R.M., Chinnaiah, H.B., Nutman, T., Kaliraj, P. & McCarthy, J. (2004) The larval specific filarial ALT-2: induction of protection using protein or DNA vaccination. Microbiology and Immunology 48, 945955.Google Scholar
Renz, A., Trees, A.J., Achukwi, M.D., Edwards, G. & Wahl, G. (1995) Evaluation of suramin, ivermectin and CGP 20376 in a new macrofilaricidal drug screen, Onchocerca ochengi in African cattle. Tropical Medicine and Parasitology 46, 3137.Google Scholar
Schonemeyer, A., Lucius, R., Sonneburg, B., Brattig, N., Sabat, R., Schilling, K., Bradley, J. & Hartmann, S. (2001) Modulation of human T cell responses and macrophages functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus . Journal of Immunology 167, 32073215.Google Scholar
Studier, F.W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification 41, 207234.Google Scholar
Torrero, M.N., Hübner, M.P., Larson, D., Karasuyama, H. & Mitre, E.J. (2010) Basophils amplify type 2 immune response, but do not serve a protective role, during chronic infection of mice with the filarial nematode Litomosoides sigmodontis . Journal of Immunology 185, 74267434.Google Scholar
Trees, A.J., Wahl, G., Klager, S. & Renz, A. (1992) Age-related differences in parasitosis may indicate acquired immunity against microfilariae in cattle naturally infected with Onchocerca ochengi . Parasitology 104, 247252.Google Scholar
Voung, P.N., Wanji, S., Prod'Hon, J. & Bain, O. (1994) Subcutanous nodules and cutaneous lesions caused by different Onchocerca in African cattle. Revue Elevage et Medicine Veterinaire des Pays Tropicaux 47, 4751.Google Scholar
Wahl, G., Achukwi, M.D., Mbah, D., Dawa, O. & Renz, A. (1994) Bovine onchocerciasis in north Cameroon. Veterinary Parasitology 52, 297311.Google Scholar
Wahl, G., Enyong, P., Ngosso, A., Schibel, J.M., Moyou, R., Tubbesing, H., Ekale, D. & Renz, A. (1998) Onchocerca ochengi: epidemiological evidence of cross-protection against Onchocerca volvulus in man. Parasitology 116, 349362.Google Scholar
Weiss, N. & Karam, M. (1989) Evaluation of a specific enzyme immunoassay for onchocerciasis using a low molecular weight antigen fraction of Onchocerca volvulus . American Journal Tropical Medicine and Hygiene 40, 261270.CrossRefGoogle ScholarPubMed
Xie, H., Bain, O. & William, S.A. (1994) Molecular phylogenetic studies on filarial parasites based on 5S ribosomal spacer sequences. Parasite 1, 141151.Google Scholar
Yang, W., Egerton, G., Pappin, D.J.C., Harrison, R.A., Wilkinson, M.C., Underwood, A. & Bianco, A.E. (2004) The secreted larval acidic proteins (SLAPs) of Onchocerca spp. are encoded by orthologues of alt gene family of Brugia malayi and have host protective potential. Molecular and Biochemical Parasitology 134, 213224.Google Scholar
Zahner, H., Hobom, G. & Stirm, S. (1995) The microfilarial sheath and its proteins. Parasitology Today 11, 116120.Google Scholar