Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-09T16:33:38.736Z Has data issue: false hasContentIssue false

The Light Organs of Sepiola Atlantica and Spirula Spirula (Mollusca: Cephalopoda): Bacterial and Intrinsic Systems in The Order Sepioidea

Published online by Cambridge University Press:  11 May 2009

Peter J. Herring
Affiliation:
Institute of Oceanographic Sciences, Wormley, Surrey
Malcolm R. Clarke
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
S. Von Boletzky
Affiliation:
Laboratoire Arago, Banyuls-sur-Mer, France
K. P. Ryan
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

Symbiotic luminous bacteria have been described in, and cultured from, a number of species offish and cephalopod. Indeed only in these two groups are extracellular luminous bacteria believed to be utilized as a source of light (see Buchner (1965) and Herring (1978) for references). Despite several earlier investigations of such symbioses in cephalopods the bacteria in these animals have not been adequately identified, nor has the extent of their role been clarified. The ultrastructural relationships between bacteria and the tissues of the squid accessory nidamental gland have been investigated in the non-luminous species Loligo pealei (Lesueur) (Bloodgood, 1977) and Sepia officinalis L. (Van den Branden et al. 1979) but no comparative work on luminous species has been undertaken apart from that on Heteroteuthis dispar (Rüppell), whose photophore does not contain typical luminous bacteria (Dilly & Herring, 1978; cf. Leisman, Cohn & Nealson, 1980). The order Sepioidea contains five families, among which are the two families Sepiolidae and Spirulidae. Though the presence of luminous bacteria is known in some sepiolids (as well as in certain loliginids (order Teuthoidea)) some doubt remains about the source of light in the photophore of Spirula spirula Hoyle. The steady luminescence of this species has prompted speculation that bacteria may be involved (Harvey, 1952). In this paper we compare the anatomy and ultrastructure of the photophores of both Sepiola and Spirula in order to clarify some of these problems.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloodgood, R. A., 1977. The squid accessory nidamental gland: ultrastructure and association with bacteria. Tissue and Cell, 9, 197208.CrossRefGoogle ScholarPubMed
Boletzky, S. V., 1970. Biological results of the University of Miami deep sea expeditions. 54. On the presence of light organs in Semirossia Steenstrup, 1887 (Mollusca: Cephalopoda). Bulletin of Marine Science, 20, 374388.Google Scholar
Boletzky, S. V., 1971. Neorossia n.g. pro Rossia (Allorossia) caroli Joubin, 1902, with remarks on the generic status of Semirossia Steenstrup, 1887 (Mollusca: Cephalopoda). Bulletin of Marine Science, 21, 964969.Google Scholar
Boucaud-Camou, E., 1980. Junctional structures in digestive epithelia of a cephalopod. Tissue and Cell, 12, 395404.CrossRefGoogle ScholarPubMed
Brocco, S. L. & Cloney, R. A., 1980. Reflector cells in the skin of Octopus dofleini. Cell and Tissue Research, 205, 167186.CrossRefGoogle ScholarPubMed
Buchner, P., 1965. Endosymbiosis of Animals with Plant Microorganisms. 909 pp. New York: Interscience.Google Scholar
Chun, C., 1910. Die Cephalopoden. I. Oegopsida. Wissenschaftliche ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer ‘Valdivia’ 1898–1899, 18, 401 pp.Google Scholar
Cloney, R. A. & Florey, E., 1968. Ultrastructure of cephalopod chromatophore organs. Zeitschrift für Zellforschung und mikroskopische Anatomie, 89, 250280.CrossRefGoogle ScholarPubMed
Dahlgren, U., 1916. The production of light by animals. Light production in cephalopods. Journal of the Franklin Institute, 81, 525556.CrossRefGoogle Scholar
Denton, E. J. & Land, M. F., 1971. Mechanism of reflexion in silvery layers offish and cephalopods. Proceedings of the Royal Society (B), 178, 4361.Google Scholar
Dilly, P. N. & Herring, P. J., 1978. The light organ and ink sac of Heteroteuthis dispar (Mollusca: Cephalopoda). Journal of Zoology, 186, 4759.CrossRefGoogle Scholar
Haneda, Y., 1956. Squid producing an abundant luminous secretion found in Suruga Bay, Japan. Science Reports of the Yokosuka City Museum, 1, 2732.Google Scholar
Harvey, E. N., 1952. Bioluminescence. 649 pp. Academic Press.Google Scholar
Herfurth, A. H., 1936. Beitrage zur Kenntnis der Bakteriensymbiose der Cephalopoden. Zeitschrift für Morphologie und Ökologie de Tiere, 31, 561607.CrossRefGoogle Scholar
Herring, P. J. (ed.), 1978. Bioluminescence in Action, xxvi, 570 pp. Academic Press.Google Scholar
Leisman, G., Cohn, D. H. & Nealson, K. N., 1980. Bacterial origin of luminescence in marine animals. Science, New York, 208, 12711273.CrossRefGoogle ScholarPubMed
Mirow, S., 1972. Skin color in the squids Loligo pealii and Loligo opalescens. II. Iridophores. Zeitschrift für Zellforschung und mikroskopische Anatomie, 125, 176190.CrossRefGoogle ScholarPubMed
Naef, A., 1912. Zur Morphologie und Systematic der Sepiola- und Sepietta-Artea. Zoologischer Anzeiger, 40, 7885.Google Scholar
Naef, A., 1923. Die Cephalopoden. Fauna und Flora des Golfes von Neapel, 35(2), 149863.Google Scholar
Okada, Y. K., 1927. Contribution a l'étude des Cephalopodes lumineux. VI. Organes photogènes des sepiolides et présence des mêmes organes chez Loligo edulis Hoyle. Bulletin de l'Institut océanographique, no. 499, 815.Google Scholar
Ruby, E. G. & Morin, J. G. 1978. Specificity of symbiosis between deep-sea fishes and psychro-tropic bacteria. Deep-Sea Research, 25, 161171.CrossRefGoogle Scholar
Ruby, E. G. & Nealson, K. H., 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 151, 574586.CrossRefGoogle Scholar
Schmidt, J., 1922. Live specimens of Spirula. Nature, London, no, 788790.CrossRefGoogle Scholar
Shimomura, O., Inoue, S., Johnson, F. H. & Haneda, Y., 1980. Widespread occurrence of coelenterazine in marine bioluminescence. Comparative Biochemistry and Physiology, 65B, 435437.Google Scholar
Singley, C. T., 1980. Ultrastructure of the bacterial photophore of the sepiolid squid Euprymna scolopes. Abstracts of the 46th Annual Meeting of the American Malacological Union, Louisville, Kentucky, 1980, p. 20.Google Scholar
Tebo, B. M., Linthicum, D. S. & Nealson, K. H., 1979. Luminous bacteria and light emitting fish: ultrastructure of the symbiosis. BioSystems, 11, 269280.CrossRefGoogle ScholarPubMed
Van Den Branden, C., Richard, A., Lemaire, J. & Decleir, W., 1979. La glande nidamentaireaccessoire de Sepia officinalis L.: analyses biochimiques des pigments des bacteries symbiotiques. Annales de la Societe royale zoologique de Belgique, 108, 123139.Google Scholar
Wülker, G., 1910. Über Japanische Cephalopoden. Beitrage zur Kenntnis der Systematic und Anatomie der Dibranchiaten. In Beiträge zur Naturgeschichte Ostasiens (ed. F., Doflein), pp. 171. Munich: K. Bayer Akademie der Wissenschaften.Google Scholar
Young, R. E., 1977. Ventral bioluminescent countershading in midwater cephalopods. Symposia of the Zoological Society of London, no. 38, 161190.Google Scholar
Young, R. E. & Arnold, J. M. (In the Press.) The functional morphology of a ventral photophore from the mesopelagic squid, Abralia trigonura. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass.Google Scholar