Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T07:09:22.841Z Has data issue: false hasContentIssue false

Identification of a novel assemblage G subgenotype and a zoonotic assemblage B in rodent isolates of Giardia duodenalis in the Canary Islands, Spain

Published online by Cambridge University Press:  04 September 2013

ÁNGELA FERNÁNDEZ-ÁLVAREZ
Affiliation:
University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
AARÓN MARTÍN-ALONSO
Affiliation:
University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
NÉSTOR ABREU-ACOSTA
Affiliation:
Analytical Biotech, Santa Cruz de Tenerife, Canary Islands, Spain
CARLOS FELIU
Affiliation:
Laboratory of Parasitology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
JEAN-PIERRE HUGOT
Affiliation:
Muséum National d'Histoire naturelle, Paris, France
BASILIO VALLADARES
Affiliation:
University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
PILAR FORONDA*
Affiliation:
University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
*
*Corresponding author: University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna. Avda. Astrofísico Fco. Sánchez, s/n 38203 La Laguna, Canary Islands, Spain. E-mail: pforonda@ull.es

Summary

The flagellated parasite Giardia duodenalis is known as one of the most common causes of protozoal diarrhoea in both humans and animals worldwide. The aim of the present work was to perform the first study of G. duodenalis in rodents in the Canary Islands (Spain) and analyse the level of genetic variation and the potential zoonotic role of the isolates. Stool samples were collected from 284 wild rodents and Giardia cysts were detected by light microscopy. The overall prevalence of giardiasis was 25·4% and ranged from 19·4% in El Hierro to 34% in Gran Canaria. Positive samples were further characterized by PCR and nucleotide sequencing of the triose phosphate isomerase (TPI), β-giardin (BG) and glutamate dehydrogenase (GDH) genes. Our study revealed assemblage G as the most frequent genotype and identified two rodent-infecting G. duodenalis haplotypes of this assemblage, HI and HII. Phylogenetic analysis supported the monophyly of haplotype HI, which we suggest to be considered as a novel G. duodenalis sub-assemblage GII, due to the high genetic distances among this sub-genotype and assemblage G. Furthermore, G. duodenalis assemblage B was detected in an inhabited area in La Palma, a fact that may pose a potential risk of G. duodenalis transmission from rodents to humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amar, C. F. L., Dear, P. H., Pedraza-Diaz, S., Looker, N., Linnane, E. and McLauchlin, J. (2002). Sensitive PCR-restriction fragment length polymorphism assay for detection and genotyping of Giardia duodenalis in human feces. Journal of Clinical Microbiology 40, 446452. doi: 10.1128/JCM.40.2.446-452.2002.Google Scholar
Armson, A., Yang, R., Thompson, J., Johnson, J., Reid, S. and Ryan, U. M. (2009). Giardia genotypes in pigs in Western Australia: prevalence and association with diarrhea. Experimental Parasitology 121, 381383. doi: 10.1016/j.exppara.2009.01.008.Google Scholar
Bajer, A. (2008). Between-year variation and spatial dynamics of Cryptosporidium spp. and Giardia spp. infections in naturally infected rodent populations. Parasitology 135, 16291649. doi: 10.1017/S0031182008004952.Google Scholar
Bajer, A., Bednarska, M., Pawelczyk, A., Behnke, J. M., Gilbert, F. S. and Sinski, E. (2002). Prevalence and abundance of Cryptosporidium parvum and Giardia spp. in wild rural rodents from the Mazury Lake District region of Poland. Parasitology 125, 2134. doi: 10.1017/S0031182002001865.Google Scholar
Bajer, A., Bednarska, M., Paziewska, A., Romanowski, J. and Siński, E. (2008). Semi-aquatic animals as a source of water contamination with Cryptosporidium and Giardia . Wiadomości parazytologiczne 54, 315318.Google Scholar
Bednarska, M., Bajer, A., Sinski, E., Girouard, A. S., Tamang, L. and Graczyk, T. K. (2007). Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife. Parasitology Research 100, 455460. doi: 10.1007/s00436-006-0276-y.Google Scholar
Bitto, A. and Aldras, A. (2009). Prevalence of Giardia and Cryptosporidium in muskrats in northeastern Pennsylvania and New Jersey. Journal of Environmental Health 71, 2026.Google Scholar
Cacciò, S. M. and Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology 160, 7580. doi: 10.1016/j.molbiopara.2008.04.006.Google Scholar
Cacciò, S. M., De Giacomo, M. and Pozio, E. (2002). Sequence analysis of the beta-giardin gene and development of a polymerase chain reaction-restriction fragment length polymorphism assay to genotype Giardia duodenalis cysts from human faecal samples. International Journal for Parasitology 32, 10231030. doi: 10.1016/S0020-7519(02)00068-1.Google Scholar
Castro-Hermida, J. A., Almeida, A., Gonzalez-Warleta, M., Correia da Costa, J. M., Rumbo-Lorenzo, C. and Mezo, M. (2007). Occurrence of Cryptosporidium parvum and Giardia duodenalis in healthy adult domestic ruminants. Parasitology Research 101, 14431448. doi: 10.1007/s00436-007-0624-6.Google Scholar
Coklin, T., Farber, J., Parrington, L. and Dixon, B. (2007). Prevalence and molecular characterization of Giardia duodenalis and Cryptosporidium spp. in dairy cattle in Ontario, Canada. Veterinary Parasitology 150, 297305. doi: 10.1016/j.vetpar.2007.09.014.Google Scholar
Covacin, C., Aucoin, D. P., Elliot, A. and Thompson, R. C. (2011). Genotypic characterization of Giardia from domestic dogs in the USA. Veterinary Parasitology 177, 2832. doi: 10.1016/j.vetpar.2010.11.029.Google Scholar
De Souza, P. N. B., Bomfim, T. C. B., Huber, F., Abboud, L. C. S. and Gomes, R. S. (2009). Natural infection by Cryptosporidium sp., Giardia sp. and Eimeria leuckarti in three groups of equines with different handlings in Rio de Janeiro, Brazil. Veterinary Parasitology 160, 327333. doi: 10.1016/j.vetpar.2008.10.103.Google Scholar
Dunlap, B. G. and Thies, M. L. (2002). Giardia in beaver (Castor canadensis) and nutria (Myocastor coypus) from east Texas. Journal of Parasitology 88, 12541258. doi: 10.1645/0022-3395(2002)088[1254:GIBCCA]2.0.CO;2.Google Scholar
Fayer, R., Santín, M., Trout, J. M., DeStefano, S., Koenen, K. and Kaur, T. (2006). Prevalence of Microsporidia, Cryptosporidium spp., and Giardia spp. in beavers (Castor canadensis) in Massachusetts. Journal of Zoo and Wildlife Medicine 37, 492497. doi: 10.1638/06-013.1.Google Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791. doi: 10.2307/2408678.Google Scholar
Foronda, P., Del Castillo, A., Abreu, N., Figueruelo, E., Piñero, J. and Casanova, J. C. (2003). Parasitic helminths of the wild rabbit, Oryctolagus cuniculus, in different bioclimatic zones in Tenerife, Canary Islands. Journal of Helminthology 77, 305309. doi: 10.1079/JOH2003182.Google Scholar
Foronda, P., López-González, M., Hernández, M., Haukisalmi, V. and Feliu, C. (2011). Distribution and genetic variation of hymenolepidid cestodes in murid rodents on the Canary Islands (Spain). Parasites and Vectors 4, 185. doi: 10.1186/1756-3305-4-185.Google Scholar
Gelanew, T., Lalle, M., Hailu, A., Pozio, E. and Cacciò, S. M. (2007). Molecular characterization of human isolates of Giardia duodenalis from Ethiopia. Acta Tropica 102, 9299. doi: 10.1016/j.actatropica.2007.04.003.Google Scholar
Hasegawa, M., Kishino, H. and Yano, T. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174. doi: 10.1007/BF02101694.Google Scholar
Itagaki, T., Kinoshita, S., Aoki, M., Itoh, N., Saeki, H., Sato, N., Uetsuke, J., Izumiyama, S., Yagita, K. and Endo, T. (2005). Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamate dehydrogenase gene sequencing. Veterinary Parasitology 133, 283287. doi: 10.1016/j.vetpar.2005.05.061.Google Scholar
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120. doi: 10.1007/BF01731581.Google Scholar
Kosuwin, R., Putaporntip, C., Pattanawong, U. and Jongwutiwes, S. (2010). Clonal diversity in Giardia duodenalis isolates from Thailand: evidences for intragenic recombination and purifying selection at the beta giardin locus. Gene 449, 18. doi: 10.1016/j.gene.2009.09.010.Google Scholar
Lalle, M., Pozio, E., Capelli, G., Bruschi, F., Crotti, D. and Cacciò, S. M. (2005). Genetic heterogeneity at the β-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic sub-genotypes. International Journal for Parasitology 35, 207213. doi: 10.1016/j.ijpara.2004.10.022.Google Scholar
Levecke, B., Geldhof, P., Claerebout, E., Dorny, P., Vercammen, F., Cacciò, S. M., Vercruysse, J. and Geurden, T. (2009). Molecular characterisation of Giardia duodenalis in captive non-human primates reveals mixed assemblage A and B infections and novel polymorphisms. International Journal for Parasitology 39, 15951601. doi: 10.1016/j.ijpara.2009.05.013.Google Scholar
Levecke, B., Meulemans, L., Dalemans, T., Casaert, S., Claerebout, E. and Geurden, T. (2011). Mixed Giardia duodenalis assemblage A, B, C and E infections in pet chinchillas (Chinchilla lanigera) in Flanders (Belgium). Veterinary Parasitology 177, 166170.Google Scholar
Lv, C. C., Feng, C., Qi, M., Yang, H. Y., Jian, F. C., Ning, C. S. and Zhang, L. X. (2009). Investigation on the prevalence of gastrointestinal parasites in pet hamsters. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 27, 279280.Google Scholar
Mendonça, C., Almeida, A., Castro, A., de Lurdes Delgado, M., Soares, S., da Costa, J. M. and Canada, N. (2007). Molecular characterization of Cryptosporidium and Giardia isolates from cattle from Portugal. Veterinary Parasitology 147, 4750. doi: 10.1016/j.vetpar.2007.03.019.Google Scholar
Monis, P. T., Andrews, R. H., Mayrhofer, G. and Ey, P. L. (2003). Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infection, Genetics and Evolution 3, 2938. doi: 10.1016/S1567-1348(02)00149-1.Google Scholar
Page, R. D. M. (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358. doi: 10.1093/bioinformatics/12.4.357.Google Scholar
Paziewska, A., Bednarska, M., Niewegłowski, H., Karbowiak, G. and Bajer, A. (2007). Distribution of Cryptosporidium and Giardia spp. in selected species of protected and game mammals from North-Eastern Poland. Annals of Agricultural Environmental Medicine 14, 265270.Google Scholar
Read, C. M., Monis, P. T. and Thompson, R. C. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infection, Genetics and Evolution 4, 125130. doi: 10.1016/j.meegid.2004.02.001.Google Scholar
Richie, L. S. (1948). Another sedimentation technique for routine stool examination. US Army Medical Department Journal 8, 326.Google Scholar
Sprong, H., Caccio, S. M. and van der Giessen, J. W. (2012). Identification of zoonotic genotypes of Giardia duodenalis . PLoS Neglected Tropical Diseases 3, e558. doi: 10.1371/journal.pntd.0000558.Google Scholar
Strimmer, K. and Haeseler, A. (1996). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13, 964969.Google Scholar
Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J. M., Schantz, P. M., Das, P., Lal, A. A. and Xiao, L. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis . Emerging Infectious Diseases 9, 14441452. doi: 10.3201/eid0911.030084.Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599. doi: 10.1093/molbev/msm092.Google Scholar
Thompson, R. C. A., Hopkins, R. M. and Homan, W. L. (2000). Nomenclature and genetic groupings of Giardia infection in mammals. Parasitology Today 16, 210213. doi: 10.1016/S0169-4758(99)01624-5.Google Scholar
Traub, R. J., Monis, P., Robertson, I., Irwin, P., Mencke, N. and Thompson, R. C. (2004). Epidemiological and molecular evidence support the zoonotic transmission of Giardia among humans and dogs living in the same community. Parasitology 128, 5362. doi: 10.1017/S0031182003004505.Google Scholar
Traub, R., Wade, S., Read, C., Thompson, A. and Mohammed, H. (2005). Molecular characterization of potentially zoonotic isolates of Giardia duodenalis in horses. Veterinary Parasitology 130, 317321. doi: 10.1016/j.vetpar.2005.02.011.Google Scholar
Valladares, B., Lopez-Roman, R., De Armas, F. and Gijon, H. (1983). Estudio epidemiológico del parasitismo intestinal humano en el archipiélago canario. Laboratorio 74, 5376.Google Scholar
Young, K. H., Bullock, S. L., Melvin, D. M. and Sprnill, C. L. (1979). Ethyl acetate as a substitute for the ethyl ether in the formalin-ether sedimentation technique. Journal of Clinical Microbiology 10, 852853.Google Scholar
Wielinga, C. M. and Thompson, R. C. A. (2007). Comparative evaluation of Giardia duodenalis sequence data. Parasitology 134, 17951821. doi: 10.1017/S0031182007003071.Google Scholar