Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-12T17:39:18.164Z Has data issue: false hasContentIssue false

Outflows and Accretion in Young Stellar Objects

Published online by Cambridge University Press:  26 May 2016

Nuria Calvet*
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden St., MS 42, Cambridge, MA 02138, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Outflows in young stellar objects are powered by accretion, and ∼ 0.1 of the accreted material is lost in the outflow. Observational evidence is analyzed in the context of models for the origin of the wind. Winds in FU Ori objects are clear examples of disk winds. In Classical T Tauri stars, there is evidence for the existence of a wide angle wind at scales < 100 AU, which supports the X-wind model prediction that narrow jets are the result of density/temperature enhancement towards the axis of the system. However, recent HST observations of the DG Tau jet indicate that the opening angle of the wind is more confined than predicted by the X-wind model, in better agreement with disk wind theories.

Type
Part 11: Open Magnetic Structures and Winds
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bacciotti, F., Ray, T. P., Mundt, R., Eislöffel, J., & Solf, J. 2002, ApJ, 576, 222.Google Scholar
Bacciotti, F., Mundt, R., Ray, T. P., Eislöffel, J., Solf, J., & Camezind, M. 2000, ApJ, 537, L49.Google Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883.CrossRefGoogle Scholar
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924.Google Scholar
Bertout, C., Basri, G., & Bouvier, J. 1988, ApJ, 330, 350.Google Scholar
Böhm, K., & Solf, J., 1994, ApJ 430, 277290.Google Scholar
Brown, A., Jordan, C, Millar, T. J., & Gondhalekar, P., Wilson, R., 1981, Nature, 290, 34.CrossRefGoogle Scholar
Burrows, C. J. et al. 1996, ApJ, 473, 437.CrossRefGoogle Scholar
Calvet, N., Hartmann, L., Hewett, R. 1992, ApJ, 386, 229.Google Scholar
Calvet, N., Hartmann, L., Kenyon, S. J. 1993, ApJ, 402, 623.Google Scholar
Calvet, N., Hartmann, L., Kenyon, S. J., & Whitney, B. A., 1994, ApJ 434, 330.Google Scholar
Calvet, N. 1997, Herbig-Haro Flows and the Birth of Low Mass Stars, 417, Reipurth, B. & Bertout, C. (eds.).Google Scholar
Calvet, N. & Gullbring, E. 1998, ApJ, 509, 802.Google Scholar
Costa, V. M., Lago, M. T. V. T., Norci, L., & Meurs, E. J. A. 2000, A&A, 354, 621.Google Scholar
Duchêne, G., Ghez, A., & McCabe, C., 2002, ApJ 568, 771.CrossRefGoogle Scholar
Edwards, S., Hartigan, P., Ghandour, L. & Andrulis, C. 1994, AJ, 108, 1056.Google Scholar
Eislöffel, J., & Mundt, R., 1998, AJ 115, 1554.CrossRefGoogle Scholar
Gammie, C. F. 1996, ApJ, 457, 355.Google Scholar
Ghosh, P. & Lamb, F. K. 1979, ApJ, 234, 296.Google Scholar
Giampapa, M. S., Calvet, N., Imhoff, C. L., & Kuhi, L. V. 1981, ApJ, 251, 113.Google Scholar
Gullbring, E., Hartmann, L., Briceño, C., & Calvet, N. 1998, ApJ, 492, 323.Google Scholar
Gullbring, E., Calvet, N., Muzerolle, J., Hartmann, L., 2000, ApJ 544, 927.CrossRefGoogle Scholar
Hartmann, L. 1998, Accretion Processes in Star Formation, Cambridge University Press.Google Scholar
Hartmann, L., Edwards, S., Avrett, E.: 1982, ApJ, 261, 279.Google Scholar
Hartmann, L., Calvet, N., Avrett, E. H., Loeser, R. 1990, ApJ, 349, 168.Google Scholar
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669.Google Scholar
Hartmann, L., Calvet, N. 1995, AJ., 109, 1846.Google Scholar
Hartmann, L., Kenyon, S. J. 1996, ARAA, 34, 207.Google Scholar
Hartigan, P., Edwards, S., & Ghandour, L., 1995, ApJ, 452, 736.Google Scholar
Kenyon, S. J. & Hartmann, L. 1987, ApJ, 323, 714.Google Scholar
Königl, A. 1989, ApJ, 342, 208.Google Scholar
Königl, A. 1991, ApJ, 370, L39.Google Scholar
Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603.Google Scholar
Johns-Krull, C. M., Valenti, J. A., Hatzes, A. P., & Kanaan, A. 1999a, ApJ, 510, L41.Google Scholar
Johns-Krull, C. M., Valenti, J. A., & Koresko, C. 1999b, ApJ, 516, 900.Google Scholar
Kuhi, L. V. 1964, ApJ, 140, 1409.Google Scholar
Momose, M., Nagayoshi, O., Kawabe, R., Masahiko, H., & Nakano, T., 1996, ApJ, 470, 10011014.Google Scholar
Muzerolle, J., Calvet, N., & Hartmann, L. 1998, ApJ, 492, 743.Google Scholar
Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 455.Google Scholar
Muzerolle, J., Calvet, N., & Hartmann, L. 2001, ApJ, 550, 944.Google Scholar
Muzerolle, J., Hillenbrand, L., Calvet, N., Briceño, C., & Hartmann, L. 2003a, ApJ, 592, 266.Google Scholar
Muzerolle, J., D'Alessio, P., Calvet, N., & Hartmann, L. 2003b, ApJ, (submitted).Google Scholar
Muzerolle, J., Calvet, N., Hartmann, L., & D'Alessio, P. 2003c, ApJ, 597, L149.CrossRefGoogle Scholar
Natta, A., Giovanardi, C. 1990, ApJ, 356, 646.Google Scholar
Natta, A., Giovanardi, C., Palla, F. 1988, ApJ, 332, 921.Google Scholar
Pelletier, G., & Pudritz, R.E. 1992, ApJ, 394, 117.Google Scholar
Pudritz, R.E., & Norman, C.A. 1986, ApJ, 301, 571.Google Scholar
Rucinski, S. M. 1985, AJ, 90, 2321.Google Scholar
Saucedo, J., Calvet, N., Hartmann, L., & Raymond, J. 2003, ApJ, 591, 275.Google Scholar
Safier, P. 1993, ApJ, 408, 115.Google Scholar
Shang, H., Glassgold, A., Shu, F., & Lizano, S., 2002, ApJ 564, 853.Google Scholar
Solf, J., & Böhm, K. H., 1999, ApJ 523, 709.Google Scholar
Stapelfeldt, K. et al. 1998, ApJ 508, 74.Google Scholar
Shu, F., Najita, J., Ostriker, E., & Wilkin, F. 1994, ApJ, 429, 781.Google Scholar
Valenti, J., Johns-Krull, C.M., & Linsky, J., 2000, ApJS, 129, 399.Google Scholar
Walker, M. F. 1972, ApJ, 175, 89.Google Scholar
Wolf, B., Appenzeller, I., & Bertout, C. 1977, A&A, 58, 163.Google Scholar