Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T07:39:10.829Z Has data issue: false hasContentIssue false

Quantifying morphological change during an evolutionary radiation of Devonian trilobites

Published online by Cambridge University Press:  08 April 2016

Francine R. Abe
Affiliation:
1Natural History Museum/Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045. E-mail: fabe@ku.edu
Bruce S. Lieberman
Affiliation:
2Natural History Museum/Biodiversity Institute and Department of Geology, University of Kansas, Lawrence, Kansas 66045

Abstract

The fossil record provides an important source of data on adaptive radiations, and indeed some of the earliest theoretical insights on the nature of these radiations were made by paleontologists. Here we focus on the diverse Devonian Metacryphaeus group calmoniid trilobites, known from the Malvinokaffric Realm, which have been considered a classic example of an adaptive radiation preserved in the fossil record. We use a geometric morphometric analysis in conjunction with phylogenetic and biogeographic patterns and data on speciation rates. Using ancestral character state reconstruction during speciation events, we quantify patterns of morphological change in order to assess the role ecological and geographical factors may have played in mediating this radiation. We found no significant differences between the amount of morphological change that occurred during speciation events when ancestors and descendants were in the same area as opposed to when they occupied different areas. Further, the magnitude of morphological divergence did not change through time or with cladogenetic rank. These patterns, in conjunction with the fact that the radiation occurs in a geographically heterogeneous region subjected to repeated episodes of sea-level rise and fall, suggest that at the macroevolutionary scale this radiation may have been motivated more by phenomena that facilitated geographic isolation than by competition.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abe, F., and Lieberman, B. 2009. The nature of evolutionary radiations: a case study involving Devonian trilobites. Evolutionary Biology 36:225234.Google Scholar
Baldis, B. A., and Longobucco, M. 1977. Trilobites devónicos de la Precordillera noroccidental (Argentina). Ameghiniana 14:145161.Google Scholar
Bambach, R., Bush, A., and Erwin, D. 2007. Autecology and the filling of ecospace: key metazoan radiations. Paleontology 50:122.Google Scholar
Bookstein, F. L. 1989. Principal warps: thin-plate splines and the decomposition of deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:567585.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York.Google Scholar
Boucot, A. J., and Racheboeuf, P. R. 1993. Biogeographic summary of the Malvinokaffric realm Silurian and Devonian fossils. Revista Tecnica de Yacimientos Petroliferos Fiscales Bolivianos 13–14((1–4)):7175.Google Scholar
Cameron, R. A. D., Cook, L. M., and Hallows, J. D. 1996. Land snails on Porto Santo: adaptive and non-adaptive radiation. Philosophical Transactions of the Royal Society of London B 351:309327.Google Scholar
Carvalho, M. G. P. 2006. Devonian trilobites from the Falkland Islands. Paleontology 49:2134.Google Scholar
Carvalho, M. G. P., Edgecombe, G. D., and Lieberman, B. S. 1997. Devonian calmoniid trilobites from the Parnaíba Basin, Piauí State, Brazil. American Museum Novitates 3192:111.Google Scholar
Carvalho, M. G. P., Edgecombe, G. D., and Smith, L. 2003. New calmoniid trilobites (Phacopina, Acastoidea) from the Devonian of Bolivia. American Museum Novitates 3407:117.2.0.CO;2>CrossRefGoogle Scholar
Clabaut, C., Bunje, P. M. E., Salzburger, W., and Meyer, A. 2007. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution 61:560578.Google Scholar
Cooper, M. 1982. A revision of the Devonian (Emsian-Eifelian) Trilobita from the Bokkeveld Group of South Africa. Annals of the South African Museum 89:1174.Google Scholar
Cunningham, C., Omland, K., and Oakley, T. 1998. Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology and Evolution 13:361366.Google Scholar
Edgecombe, G. D. 1994. Calmoniid trilobites from the Devonian Fox Bay Formation, Falkland Islands; systematics and biogeography. New York State Museum Bulletin (1976) 481:5568.Google Scholar
Edgecombe, G. D., Vaccari, N. E., and Waisfeld, B. G. 1994. Lower Devonian calmoniid trilobites from the Argentine Precordillera; new taxa of the Bouleia group, and remarks on the tempo of calmoniid radiation. Geological Magazine 131:449464.CrossRefGoogle Scholar
Eldredge, N. 1971. Patterns of cephalic musculature in the Phacopina (Trilobita) and their phylogenetic significance. Journal of Paleontology 45:5267.Google Scholar
Eldredge, N., and Branisa, L. 1980. Calmoniid trilobites of the Lower Devonian Scaphiocoelia Zone of Bolivia, with remarks on related species. Bulletin of the American Museum of Natural History 165:181290.Google Scholar
Eldredge, N., and Cracraft, J. 1980. Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University Press, New York.Google Scholar
Eldredge, N., and Ormiston, A. R. 1979. Biogeography of Silurian and Devonian trilobites of the Malvinokaffric realm. Pp. 147167inGray, J.and Boucot, A. J., eds. Historical biogeography, plate tectonics, and the changing environment. Oregon State University Press, Corvallis.Google Scholar
Engelmann, G. F., and Wiley, E. O. 1977. The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology 26:111.Google Scholar
Erwin, D. 1992. A preliminary classification of evolutionary radiations. Historical Biology 6:133147.CrossRefGoogle Scholar
Erwin, D. 2007. Disparity: morphological pattern and developmental context. Paleontology 50:5773.Google Scholar
Esselstyn, J. A., Timm, R. M., and Brown, R. M. 2009. Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in southeast Asian shrews. Evolution 63:25952610.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis; a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.Google Scholar
Foote, M. 1991. Morphologic patterns of diversification: examples from trilobites. Paleontology 34:461485.Google Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.Google Scholar
Foote, M. 1997. Sampling, taxonomic description, and our evolving knowledge of morphological diversity. Paleobiology 23:181206.Google Scholar
Foote, M., and Raup, D. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.Google Scholar
Fortey, R., and Owens, R. 1990. Evolutionary radiations in the Trilobita. Pp. 139164inTaylor, P.and Larwood, G., eds. Major evolutionary radiations. Oxford University Press, New York.Google Scholar
Genner, M. J., Knight, M. E., Haesler, M. P., and Turner, G. F. 2010. Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology 19:170182.CrossRefGoogle ScholarPubMed
Gillespie, R. G. 2005. Geographical context of speciation in a radiation of Hawaiian Tetragnatha spiders (Araneae, Tetragnathidae). Journal of Arachnology 33:313322.Google Scholar
Gittenberger, E. 1991. What about non-adaptive radiation? Biological Journal of the Linnean Society 43:263272.Google Scholar
Glor, R. E., Gifford, M. E., Larson, A., Losos, J. B., Rodriguez-Schettino, L., Lara, A. R. C., and Jackman, T. R. 2004. Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles. Proceedings of the Royal Society of London B 271:22572265.Google Scholar
Gould, S. 1990. Wonderful life: the Burgess Shale and the nature of history. W. W. Norton, New York.Google Scholar
Grant, P. R. 1999. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton, N.J..Google Scholar
Grant, P. R., and Grant, B. R. 2007. How and why species multiply: the radiation of Darwin's finches. Princeton University Press, Princeton, N.J..CrossRefGoogle Scholar
Hallam, A. 1992. Phanerozoic sea-level changes. Columbia University Press, New York.Google Scholar
Harmon, L. J., Schulte, J. A. II, Larson, A., and Losos, J. B. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961964.Google Scholar
Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A. II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., and Mooers, A. O. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:23852396.Google ScholarPubMed
House, M. R., and Gradstein, F. M. 2004. The Devonian Period. Pp. 202221inGradstein, F. M., Ogg, J. G., and Smith, A. G., eds. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Hulbert, R. C. Jr, 1993. Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology 19:216234.Google Scholar
Irschick, D., and Losos, J. 1998. A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52:219226.Google Scholar
Isaacson, P. A., and Sablock, P. E. 1988. Devonian system in Bolivia, Peru, and northern Chile. Pp. 719728inMcMillan, N. J., Embry, A. F., and Glass, D. J., eds. Devonian of the world. Canadian Society of Petroleum Geologists, Calgary.Google Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Bulletin of the Geological Society of America 96:567587.Google Scholar
Kaufmann, B. 2006. Calibrating the Devonian time scale: a synthesis of U-Pb ID-TIMS ages and conodont stratigraphy. Earth-Science Reviews 76:175190.Google Scholar
Kozak, K. H., Weisrock, D. W., and Larson, A. 2006. Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proceedings of the Royal Society of London B 273:539–46.Google Scholar
Lack, D. 1947. Darwin's finches. Cambridge University Press, New York.Google Scholar
Lieberman, B. S. 1993. Systematics and biogeography of the “Metacryphaeus group” Calmoniidae (Trilobita, Devonian) with comments on adaptive radiations and the geological history of the Malvinokaffric realm. Journal of Paleontology 67:549570.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography. Kluwer Academic, New York.Google Scholar
Lieberman, B. S., and Eldredge, N. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology 22:6679.Google Scholar
Lieberman, B. S., Edgecombe, G. D., and Eldredge, N. 1991. Systematics and biogeography of the “Malvinella group,” Calmoniidae (Trilobita, Devonian). Journal of Paleontology 65:824843.Google Scholar
Losos, J. B., Jackman, T. R., Larson, A., De Queiroz, K., and Rodriguez-Schettino, L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:21152118.Google Scholar
Losos, J. B., Glor, R. E., Kolbe, J. J., and Nicholson, K. 2006. Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Annals of the Missouri Botanical Garden 93:2433.Google Scholar
Maddison, W. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.Google Scholar
Maddison, W., and Maddison, D. 2010. Mesquite: a modular system for evolutionary analysis, Version 2.73.Google Scholar
Mahler, D. L., Revell, L. J., Glor, R. E., and Losos, J. B. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:27312745.Google Scholar
McGhee, G. 1996. The late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York.Google Scholar
Oakley, T., and Cunningham, C. 2000. Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54:397405.Google Scholar
Olson, M. E., and Arroyo-Santos, A. 2009. Thinking in continua: beyond the ‘adaptive radiation’ metaphor. Bioessays 31:13371346.Google Scholar
Osborn, H. 1902. The law of adaptive radiation. American Naturalist 36:353363.CrossRefGoogle Scholar
Paul, C. 1992. The recognition of ancestors. Historical Biology 6:239250.Google Scholar
Pereira Soares, S., Simoes, M. G., and de Moraes Leme, J. 2008. Metacryphaeus rotundatus, um novo elemento da fauna de trilobites Calmoniidae (Phacopida), da Formacao Ponta Grossa (Devoniano), Bacia do Parana, Brasil. Geologia USP: Serie Cientifica 8(1):1524.Google Scholar
Petren, K., Grant, P., Grant, B., and Keller, L. 2005. Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation. Molecular Ecology 14:29432957.Google Scholar
Phillimore, A. B., and Price, T. D. 2008. Density-dependent cladogenesis in birds. PLoS Biology 6(3):e71.Google Scholar
Polly, P. 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist 157:596609.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.Google Scholar
Rohlf, J. 2010a. TPSDig2, Version 2.16. Department of Ecology and Evolutionary Biology, SUNY, Stony Brook, N.Y..Google Scholar
Rohlf, J. 2010b. TPSRelw, Version 1.49. Department of Ecology and Evolution, SUNY, Stony Brook, N.Y..Google Scholar
Rueber, L., Verheyen, E., Sturmbauer, C., and Meyer, A. 1998. Lake level fluctuations and speciation in rock-dwelling cichlid fish in Lake Tanganyika, East Africa. Pp. 225240inGrant, P. R., ed. Evolution on islands. Oxford University Press, Oxford.Google Scholar
Rundell, R. J., and Price, T. D. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology and Evolution 24:394399.Google Scholar
Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.Google Scholar
Shaw, A. B. 1957. Quantitative trilobite studies II. Measurement of the dorsal shell of non-agnostidean trilobites. Journal of Paleontology 31:193207.Google Scholar
Sheets, H. D. 2002. IMP Software, Version 1/17/02. Department of Physics, Canisius College, Buffalo, N.Y..Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell, Oxford.Google Scholar
Smith, L., and Lieberman, B. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian radiation. Paleobiology 459470.Google Scholar
Struve, W. 1959. Calmoniidae. Pp. O483O489inMoore, R. C.Arthropoda 1. Part O of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, New York and University of Kansas Press, Lawrence.Google Scholar
Sturmbauer, C., Baric, S., Salzburger, W., Ruber, L., and Verheyen, E. 2001. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution 18:144154.Google Scholar
Tucker, R. D., Bradley, D. C., Ver Straeten, C. A., Harris, A. G., Ebert, J. R., and McCutcheon, S. R. 1998. New U-Pb zircon ages and the duration and division of Devonian time. Earth and Planetary Science Letters 158:175186.Google Scholar
Vaccari, N. E., Waisfeld, B. G., and Edgecombe, G. D. 1994. Calmoniid trilobites of the Lower Devonian Scaphiocoelia zone in the Argentine Precordillera. Geobios 27:591608.Google Scholar
Vrba, E. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.Google Scholar
Wagner, P. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. 2000. Exhaustion of morphologic character states among fossil taxa. Evolution 54:365386.Google Scholar
Wagner, P., and Erwin, D. 2006. Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32:316337.Google Scholar
Webber, A. J.and Hunda, B. R. 2007. Quantitatively comparing morphological trends to environment in the fossil record (Cincinnatian Series, Upper Ordovician). Evolution 61:14551465.Google Scholar
Webster, A., and Purvis, A. 2002. Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proceedings of the Royal Society of London B 269:143149.Google Scholar
Webster, M., and Zelditch, M. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31:354372.CrossRefGoogle Scholar
Whittington, H. 1997. The trilobite body. Pp. O530inMoore, R. C.Arthropoda 1, Trilobita. Part O of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America, New York and University of Kansas, Lawrence.Google Scholar
Wills, M., Briggs, D., and Fortey, R. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar
Wolfart, R. 1968. Die Trilobiten aus dem Devon Boliviens und ihre Bedeutung für stratigraphie und tiergeographie. Beiträge zur Kenntnis des devon von Bolivien. Beihefte zum Geologischen Jahrbuch 74:5241.Google Scholar
Yoder, J., Clancey, E., Des Roches, S., Eastman, J., Gentry, L., Godsoe, W., Hagey, T., Jochimsen, D., Oswald, B., and Robertson, J. 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23:15811596.Google Scholar
Zelditch, M., and Fink, W. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22:241254.Google Scholar