Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T13:42:08.948Z Has data issue: false hasContentIssue false

Nectocaridid ecology, diversity, and affinity: early origin of a cephalopod-like body plan

Published online by Cambridge University Press:  11 March 2013

Martin R. Smith*
Affiliation:
Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; Palaeobiology Section, Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada. Present address: Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. E-mail: ms609@cam.ac.uk

Abstract

Nectocaridids are soft-bodied early to middle Cambrian organisms known from Burgess Shale-type deposits in Canada, China, and Australia. Originally described as unrelated species, they have recently been interpreted as a clade; their flexible tentacles, camera-type eyes, lateral fins, internal gills, axial cavity, and funnel point to a relationship with the cephalopods. However, aspects of this reinterpretation, including the relevance of the group to cephalopod evolution, have been called into question.

Here, I examine new and existing nectocaridid material, including a large new form that may represent a sexual dimorph of Nectocaris pteryx. Differences between existing taxa largely represent taphonomic variation between sites and specimens—which provides further constraint on the organisms' anatomy. I revise the morphology of the tentacles and fins, and describe mouthparts and phosphatized gills for the first time. A mathematical analysis supports the presence of the earliest known camera-type eyes, and fluid mechanical considerations suggest that the funnel is optimized for efficient jet propulsion in a low Reynolds number flow regime.

Nectocaridids closely resemble coleoid cephalopods, but a position deeper within Cephalopoda raises fewer stratigraphic challenges. Whether its coleoid-like construction reflects common ancestry or profound convergence, the Nectocaris body plan adds substantially to Cambrian disparity, demonstrating the rapid colonization of nektobenthic niches after the Cambrian explosion.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology 23:10791082.2.3.CO;2>CrossRefGoogle Scholar
Anderson, E. J., and Grosenbaugh, M. A. 2005. Jet flow in steadily swimming adult squid. Journal of Experimental Biology 208:11251146.CrossRefGoogle ScholarPubMed
Arnold, J. M. 1965. Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biological Bulletin 128:2432.CrossRefGoogle Scholar
Bartol, I. K., Krueger, P. S., Thompson, J. T., and Stewart, W. J. 2008. Swimming dynamics and propulsive efficiency of squids throughout ontogeny. Integrative and Comparative Biology 48:720733.CrossRefGoogle ScholarPubMed
Bengtson, S. 2010. Palaeontology: a little Kraken wakes. Nature 465:427428.CrossRefGoogle ScholarPubMed
Bergmann, S., Lieb, B., Ruth, P., and Markl, J. 2006. The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution. Journal of Molecular Evolution 62:362374.CrossRefGoogle ScholarPubMed
Bone, Q., and Trueman, E. R. 1982. Jet propulsion of the calycophoran siphonophores Chelophyes and Abylopsis. Journal of the Marine Biological Association of the United Kingdom 62:263276.CrossRefGoogle Scholar
Briggs, D. E. G. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 281:439487.Google Scholar
Briggs, D. E. G., and Nedin, C. 1997. The taphonomy and affinities of the problematic fossil Myoscolex from the Lower Cambrian Emu Bay Shale of South Australia. Journal of Paleontology 71:2232.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The fossils of the Burgess Shale. Smithsonian Books, Washington, D.C.Google Scholar
Brusca, R. C., and Brusca, G. J. 1990. Invertebrates. Sinauer, Sunderland, Mass.Google Scholar
Budd, G. E. 1998. Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle. Lethaia 31:197210.CrossRefGoogle Scholar
Budd, G. E. 2001. Why are arthropods segmented? Evolution and Development 3:332342.CrossRefGoogle ScholarPubMed
Budd, G. E. 2003. The Cambrian fossil record and the origin of the phyla. Integrative and Comparative Biology 43:157165.CrossRefGoogle ScholarPubMed
Budd, G. E., and Daley, A. C. 2011. The lobes and lobopods of Opabinia regalis from the middle Cambrian Burgess Shale. Lethaia 45:8395.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology 43:166177.CrossRefGoogle ScholarPubMed
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50:537543.CrossRefGoogle Scholar
Caron, J.-B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. Palaios 21:451465.CrossRefGoogle Scholar
Caron, J.-B., Scheltema, A. H., Schander, C., and Rudkin, D. 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442:159163.CrossRefGoogle ScholarPubMed
Chamberlain, J. A. Jr. 1987. Locomotion of Nautilus. Pp. 489525inSaunders, W. B. and Landman, N. H., eds. Nautilus: the biology and paleobiology of a living fossil, Vol. 6. Plenum, New York.CrossRefGoogle Scholar
Chen, A.-L., and Huang, D.-Y. 2008. Gill rays of primitive vertebrate Yunnanozoon from Early Cambrian: a first record. Frontiers of Biology in China 3:241244.CrossRefGoogle Scholar
Chen, J.-Y. 2012. Evolutionary scenario of the early history of the animal kingdom: evidence from Precambrian (Ediacaran) Weng'an and Early Cambrian Maotianshan biotas, China. Pp. 239279inTalent, J. A., ed. Earth and life. Springer, New York.CrossRefGoogle Scholar
Chen, L.-Z., Luo, H.-L., Hu, S.-X., Yin, J.-Y., Jiang, Z.-W., Wu, Z.-L., Li, F., and Chen, A.-L. 2002. Early Cambrian Chengjiang fauna in Eastern Yunnan, China. Yunnan Science and Technology Press, Kunming, China.Google Scholar
Chen, J.-Y., Huang, D.-Y., and Bottjer, D. J. 2005. An Early Cambrian problematic fossil: Vetustovermis and its possible affinities. Proceedings of the Royal Society of London B 272:20032007.Google ScholarPubMed
Chen, J.-Y., Waloszek, D., Maas, A., Braun, A., Huang, D.-Y., Wang, X. Q., and Stein, M. 2007. Early Cambrian Yangtze Plate Maotianshan Shale macrofauna biodiversity and the evolution of predation. Palaeogeography, Palaeoclimatology, Palaeoecology 254:250272.CrossRefGoogle Scholar
Collins, D. H. 1996. A spectacular Cambrian bestiary. Pp. 6977inLudvigsen, R., ed. Life in stone: a natural history of British Columbia's fossils. UBC Press, Vancouver.CrossRefGoogle Scholar
Conway Morris, S. 1976. Nectocaris pteryx, a new organism from the Middle Cambrian Burgess Shale of British Columbia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 12:703713.Google Scholar
Conway Morris, S. 1977. A redescription of the Middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia. Paläontologische Zeitschrift 51:271287.CrossRefGoogle Scholar
Conway Morris, S. 1979a. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London B 285:227274.Google Scholar
Conway Morris, S. 1979b. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics 10:327349.CrossRefGoogle Scholar
Conway Morris, S. 1985. Cambrian lagerstätten: their distribution and significance. Philosophical Transactions of the Royal Society of London B 311:4965.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian Explosion. Science 246:339346.CrossRefGoogle Scholar
Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Annual Review of Earth and Planetary Sciences 18:101122.CrossRefGoogle Scholar
Conway Morris, S. 1998. Metazoan phylogenies: falling into place or falling to pieces? A palaeontological perspective. Current Opinion in Genetics and Development 8:662667.CrossRefGoogle Scholar
Conway Morris, S. 2006. Darwin's dilemma: the realities of the Cambrian “explosion.” Philosophical Transactions of the Royal Society of London B 361:10691083.CrossRefGoogle ScholarPubMed
Conway Morris, S. 2009. The Burgess Shale animal Oesia is not a chaetognath: a reply to Szaniawski (2005). Acta Palaeontologica Polonica 54:175179.CrossRefGoogle Scholar
Conway Morris, S., and Caron, J.-B. 2012. Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biological Reviews 87:480512.CrossRefGoogle Scholar
Conway Morris, S., and Collins, D. H. 1996. Middle Cambrian ctenophores from the Stephen Formation, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B 351:279308.Google Scholar
Conway Morris, S., and Jenkins, R. J. F. 1985. Healed injuries in Early Cambrian trilobites from South Australia. Alcheringa 9:167177.CrossRefGoogle Scholar
Dabiri, J. O., and Gharib, M. 2005. The role of optimal vortex formation in biological fluid transport. Proceedings of the Royal Society of London B 272:15571560.Google ScholarPubMed
Donovan, D. T., Doguzhaeva, L. A., and Mutvei, H. 2003. Two pairs of fins in the Late Jurassic Coleoid Trachyteuthis from southern Germany. Berliner Paläobiologische Abhandlungen 3:9199.Google Scholar
Dzik, J. 2010. Brachiopod identity of the alleged monoplacophoran ancestors of cephalopods. Malacologia 52:97113.CrossRefGoogle Scholar
Erwin, D. H. 2011. Evolutionary uniformitarianism. Developmental Biology 357:2734.CrossRefGoogle ScholarPubMed
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.CrossRefGoogle ScholarPubMed
Friedman, M., and Sallan, L. C. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707742.CrossRefGoogle Scholar
Fuchs, D., Bracchi, G., and Weis, R. 2009. New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon. Palaeontology 52:6581.CrossRefGoogle Scholar
Gabbott, S. E., Zalasiewicz, J., and Collins, D. 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society, London 165:307318.CrossRefGoogle Scholar
Gabbott, S. E., Hou, X.-G., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32:901904.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E. G., and Zhao, Y.-L. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36:755758.CrossRefGoogle Scholar
García-Bellido, D. C., Paterson, J. R., Edgecombe, G. D., Jago, J. B., Gehling, J. G., and Lee, M. S. Y. 2009. The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the Lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology 52:12211241.CrossRefGoogle Scholar
Gillooly, J. F., Allen, A. P., West, G. B., and Brown, J. H. 2005. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America 102:140145.CrossRefGoogle ScholarPubMed
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa 3:2131.CrossRefGoogle Scholar
Gould, S. J. 1989. Wonderful life: the Burgess Shale and the nature of history. W. W. Norton, London.Google Scholar
Hagadorn, J. W. 2002. Burgess Shale: Cambrian explosion in full bloom. Pp. 6190inBottjer, D. J., ed. Exceptional fossil preservation: a unique view on the evolution of marine life. Columbia University Press, New York.Google Scholar
Hall, P. A., McKirdy, D. M., Halverson, G. P., Jago, J. B., and Gehling, J. G. 2011. Biomarker and isotopic signatures of an early Cambrian lagerstätte in the Stansbury Basin, South Australia. Organic Geochemistry 42:13241330.CrossRefGoogle Scholar
Han, J., Zhang, Z.-F., and Liu, J.-N. 2008. A preliminary note on the dispersal of the Cambrian Burgess Shale-type faunas. Gondwana Research 14:269276.CrossRefGoogle Scholar
Hanlon, R. T., and Messenger, J. B. 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge, 233p.Google Scholar
Hoerner, S. F. 1965. Fluid dynamic drag: theoretical, experimental and statistical information. Hoerner Fluid Dynamics, Brick Town, N.J.Google Scholar
Hu, S.-X., Steiner, M., Zhu, M.-Y., Erdtmann, B.-D., Luo, H., Chen, L.-Z., and Weber, B. 2007. Diverse pelagic predators from the Chengjiang lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254:307316.CrossRefGoogle Scholar
Hurley, A. C., Lange, G. D., and Hartline, P. H. 1978. The adjustable “pinhole camera” eye of Nautilus. Journal of Experimental Zoology 205:3743.CrossRefGoogle Scholar
Insom, E., Pucci, A., and Simonetta, A. M. 1995. Cambrian Protochordata, their origin and significance. Bollettino di Zoologia 62:243252.CrossRefGoogle Scholar
Ivantsov, A. Y. 2009. New reconstruction of Kimberella, problematic Vendian metazoan. Paleontological Journal 43:601611.CrossRefGoogle Scholar
Jackson, D. J., McDougall, C., Woodcroft, B., Moase, P., Rose, R. A., Kube, M., Reinhardt, R., Rokhsar, D. S., Montagnani, C., Joubert, C., Piquemal, D., and Degnan, B. M. 2010. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution 27:591608.CrossRefGoogle ScholarPubMed
Jago, J. B., and Cooper, B. J. 2011. The Emu Bay Shale lagerstätte: a history of investigations. Australian Journal of Earth Sciences 58:235241.CrossRefGoogle Scholar
Johnsen, S. 2001. Hidden in plain sight: the ecology and physiology of organismal transparency. Biological Bulletin 201:301318.CrossRefGoogle ScholarPubMed
Kier, W. M., and Thompson, J. T. 2003. Muscle arrangement, function and specialization in recent coleoids. Berliner Paläobiologische Abhandlungen 3:141162.Google Scholar
Kluessendorf, J., and Doyle, P. 2000. Pohlsepia mazonensis, an early “octopus” from the Carboniferous of Illinois, USA. Palaeontology 43:919926.CrossRefGoogle Scholar
Kröger, B. 2007. Some lesser known features of the ancient cephalopod order Ellesmerocerida (Nautiloidea, Cephalopoda). Palaeontology 50:565572.CrossRefGoogle Scholar
Kröger, B., Vinther, J., and Fuchs, D. 2011. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602613.CrossRefGoogle ScholarPubMed
Land, M. F. 1995. The functions of eye movements in animals remote from man. Pp. 6376inFindlay, J. M., Walker, R., and Kentridge, R. W., eds. Studies in visual information processing, Vol. 6. North-Holland/Elsevier Science, Amsterdam.Google Scholar
Land, M. F., and Nilsson, D.-E. 2002. Animal eyes. Oxford University Press, Oxford.Google Scholar
Landing, E., and Kröger, B. 2012. Cephalopod ancestry and ecology of the hyolith “Allathecadegeeri s.l. in the Cambrian evolutionary radiation. Palaeogeography, Palaeoclimatology, Palaeoecology 353– 355:2130.CrossRefGoogle Scholar
Lange, A. 2012. Darwins Erbe im Umbau. Königshausen and Neumann, Würzburg.Google Scholar
Lehmann, U. 1985. Zur anatomie der ammoniten: tintenbeutel, kiemen, augen. Paläontologische Zeitschrift 59:99108.CrossRefGoogle Scholar
Leneweit, G., and Auerbach, D. 1999. Detachment phenomena in low Reynolds number flows through sinusoidally constricted tubes. Journal of Fluid Mechanics 387:129150.CrossRefGoogle Scholar
Luo, H., Hu, S.-X., Chen, L., Zhang, S., and Tao, Y. 1999. Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science and Technology Press, Yunnan.Google Scholar
Madin, L. P. 1990. Aspects of jet propulsion in salps. Canadian Journal of Zoology 68:765777.CrossRefGoogle Scholar
Mazurek, D., and Zatoń, M. 2011. Is Nectocaris pteryx a cephalopod? Lethaia 44:24.CrossRefGoogle Scholar
Miklos, G. L. G. 1993. Emergence of organizational complexities during metazoan evolution: perspectives from molecular biology, palaeontology and neo-Darwinism. Memoirs of the Association of Australasian Palaeontologists 15:741.Google Scholar
Muntz, W. R. A., and Raj, U. 1984. On the visual system of Nautilus pompilius. Journal of Experimental Biology 109:253263.CrossRefGoogle Scholar
Murdock, G. R., and Vogel, S. 1978. Hydrodynamic induction of water flow through a keyhole limpet (Gastropoda, Fissurellidae). Comparative Biochemistry and Physiology A 61:227231.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281:11731175.CrossRefGoogle ScholarPubMed
O'Brien, L. J., and Caron, J.-B. 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7:e29233.CrossRefGoogle ScholarPubMed
Ou, Q., Conway Morris, S., Han, J., Zhang, Z., Liu, J., Chen, A., Zhang, X., and Shu, D. 2012. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes. BMC Biology 10:81.CrossRefGoogle Scholar
Pabst, D. A. 1996. Springs in swimming animals. American Zoologist 36:723735.CrossRefGoogle Scholar
Page, A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36:855.CrossRefGoogle Scholar
Paterson, J. R., Jago, J. B., Gehling, J. G., García-Bellido, D. C., Edgecombe, G. D., and Lee, M. S. Y. 2008. Early Cambrian arthropods from the Emu Bay Shale Lagerstätte, South Australia. Pp. 319325inRábano, I. and Gozalo, R., eds. Advances in Trilobite Research, Vol. 9. Instituto Geológico y Minero de España, Madrid.Google Scholar
Plotnick, R. E., Dornbos, S. Q., and Chen, J.-Y. 2010. Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology 36:303317.CrossRefGoogle Scholar
Reitner, J. 2009. Preserved gill remains in Phragmoteuthis conocauda (Quenstedt, 1846-49) (Toarcian, Southern Western Germany). Berliner Paläobiologische Abhandlungen 10:289295.Google Scholar
Rodhouse, P. G., and Nigmatullin, C. M. 1996. Role as consumers. Philosophical Transactions of the Royal Society of London B 351:10031022.Google Scholar
Runnegar, B. N. 2011. Once again: is Nectocaris pteryx a stem-group cephalopod? Lethaia 44:373.CrossRefGoogle Scholar
Sasaki, T., Shigeno, S., and Tanabe, K. 2010. Anatomy of living Nautilus: reevaluation of primitiveness and comparison with Coleoidea. Pp. 3566inTanabe, K., Shigeta, Y., Sasaki, T., and Hirano, H., eds. Cephalopods: present and past. Tokai University Press, Tokyo.Google Scholar
Schoenemann, B., Liu, J., Shu, D., Han, J., and Zhang, Z. 2009. A miniscule optimized visual system in the Lower Cambrian. Lethaia 42:265273.CrossRefGoogle Scholar
Selfa, J., and Pujade-Villar, J. 2002. Paleontologia dels artròpodes. Pp. 135160inSelfa, J. and Pujade-Villar, J., eds. Fonaments de Zoologia dels Artròpodes. Universitat de València, València.Google Scholar
Signor, P. W., and Ryan, D. A. 1993. Lower Cambrian fossil Volborthella: the whole truth or just a piece of the beast? Geology 21:805.2.3.CO;2>CrossRefGoogle Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.CrossRefGoogle Scholar
Simonetta, A. M. 1988. Is Nectocaris pteryx a chordate? Bollettino di Zoologia 55:6368.CrossRefGoogle Scholar
Simonetta, A. M., and Delle Cave, L. 1982. New fossil animals from the Middle Cambrian. Bollettino di Zoologia 49:107114.CrossRefGoogle Scholar
Simonetta, A. M., Pucci, A., and Dzik, J. 1999. Hypotheses on the origin and early evolution of chordates in the light of recent zoological and palaeontological evidence. Italian Journal of Zoology 66:99119.CrossRefGoogle Scholar
Skawina, A. 2010. Experimental decay of gills in freshwater bivalves as a key to understanding their preservation in Upper Triassic lacustrine deposits. Palaios 25:215220.CrossRefGoogle Scholar
Smith, M. R. 2012a. Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula. Proceedings of the Royal Society of London B 279:42874295.Google ScholarPubMed
Smith, M. R. 2012b. Morphology, ecology, and affinity of soft-bodied “molluscs” from Cambrian Burgess Shale-type deposits. University of Toronto, Toronto, Ontario.Google Scholar
Smith, M. R., and Caron, J.-B. 2010. Primitive soft-bodied cephalopods from the Cambrian. Nature 465:469472.CrossRefGoogle ScholarPubMed
Smith, M. R., and Caron, J.-B. 2011. Nectocaris and early cephalopod evolution: reply to Mazurek and Zatoń. Lethaia 44:369372.CrossRefGoogle Scholar
Strutt, J. W. 1891. On pin-hole photography. Philosophical Magazine 31:8799.Google Scholar
Szaniawski, H. 2005. Cambrian chaetognaths recognized in Burgess Shale fossils. Acta Palaeontologica Polonica 50:18.Google Scholar
Vannier, J. 2007. Early Cambrian origin of complex marine ecosystems. Pp. 81100inWilliams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., eds. Deep time perspectives on climate change. Geological Society, London.Google Scholar
Vannier, J. 2009. The Cambrian explosion and the emergence of modern ecosystems. Comptes Rendus Palevol 8:133154.CrossRefGoogle Scholar
Vannier, J., and Chen, J.-Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35:107120.CrossRefGoogle Scholar
Vogel, S. 1994. Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton, N.J.Google Scholar
Voss, N. A. 1980. A generic revision of the Cranchiidae (Cephalopoda; Oegopsida). Bulletin of Marine Science 30:365412.Google Scholar
Waggoner, B. M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology 45:190222.CrossRefGoogle Scholar
Wells, M. J. 1990. Oxygen extraction and jet propulsion in cephalopods. Canadian Journal of Zoology 68:815824.CrossRefGoogle Scholar
Wells, M. J., and O'Dor, R. K. 1991. Jet propulsion and the evolution of the cephalopods. Bulletin of Marine Science 49:419432.Google Scholar
Whittington, H. B. 1971. The Burgess Shale: history of research and preservation of fossils. Pp.11701201inYochelson, E. L., ed. Proceedings of the North American Paleontological Convention, Chicago, 1969.Google Scholar
Whittington, H. B. 1980. The significance of the fauna of the Burgess Shale, Middle Cambrian, British Columbia. Proceedings of the Geologists' Association 91:127148.CrossRefGoogle Scholar
Whyte, M. A. 1991. Phosphate gill supports in living and fossil bivalves. Pp. 427431inSuga, S. and Nakahava, H., eds. Mechanisms and phylogeny of mineralization in biological systems. Springer, Tokyo.CrossRefGoogle Scholar
Williamson, D. I. 2006. Hybridization in the evolution of animal form and life-cycle. Zoological Journal of the Linnean Society 148:585602.CrossRefGoogle Scholar
Yochelson, E. L., Flower, R. H., and Webers, G. F. 1973. The bearing of new Late Cambrian monoplacophoran genus Knightoconus upon the origin of Cephalopoda. Lethaia 6:275309.CrossRefGoogle Scholar
Young, J. Z. 1970. The stalked eyes of Bathothauma (Mollusca, Cephalopoda). Journal of Zoology 162:437447.CrossRefGoogle Scholar
Young, R. E., Vecchione, M., and Donovan, D. T. 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20:393420.CrossRefGoogle Scholar
Zhang, X.-G., and Hou, X.-G. 2004. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis. Journal of Evolutionary Biology 17:11621166.CrossRefGoogle ScholarPubMed
Zhu, M.-Y., Babcock, L. E., and Steiner, M. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 220:3146.CrossRefGoogle Scholar