Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-15T12:23:46.094Z Has data issue: false hasContentIssue false

Taphonomic and zooarchaeological implications of spotted hyena (Crocuta crocuta) bone accumulations in Kenya: a modern behavioral ecological approach

Published online by Cambridge University Press:  08 April 2016

Sarah W. Lansing
Affiliation:
Arizona State University, School of Human Evolution and Social Change, Post Office Box 872402, Tempe, Arizona 85287. E-mail: Sarah.Lansing@asu.edu
Susan M. Cooper
Affiliation:
Texas AgriLife Research, Texas A&M University System, 1619 Garner Field Road, Uvalde, Texas 78801
Erin E. Boydston
Affiliation:
U.S. Geological Survey, Western Ecological Research Center, 320 Commerce, Suite 150, Irvine, California 92602
Kay E. Holekamp
Affiliation:
Department of Zoology, Michigan State University, East Lansing, Michigan 48824

Abstract

The significant impact of extant carnivores, particularly spotted hyenas, on the depositional history and physical characteristics of archaeofaunal and paleontological assemblages is well recognized. We focus on the behavioral ecology of extant spotted hyenas (Crocuta crocuta) in relation to bone accumulations produced by one East African clan at communal dens. Limbs and skulls of prey animals more frequently appear at dens than do other carcass portions. These items reflect the relative abundance of prey species near dens; carnivore remains are poorly represented. Comparative analysis reveals that bones are deposited far more slowly (<7 carcass portions per month) and accumulations tend to be smaller at Crocuta dens than at dens of either brown (Parahyaena brunnea) or striped (Hyaena hyaena) hyenas. We propose that extant Crocuta bone accumulation rates and sizes are likely affected by prey species abundance, clan size, social interactions within the clan, and the type and availability of den sites. We also suggest that the potential for intraspecific behavioral variability in bone accumulation patterns is important when comparisons are made among spotted hyena populations and across hyena species. For example, accumulation patterns may be dramatically influenced by the temporal span, potentially ranging from days to hundreds or thousands of years, in which bones are collected, depending on the species-specific history of occupation at a given site. Understanding the behavioral and ecological variability likely to influence bone accumulation patterns at dens used by different hyaenids will allow taphonomists and zooarchaeologists to refine their knowledge of mechanisms underlying site formation processes and potential causes of variability in deeper-time den assemblages.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersson, M., and Krebs, J. 1978. On the evolution of hoarding behaviour. Animal Behaviour 26:707711.CrossRefGoogle Scholar
Arribas, A., and Palmqvist, P. 1998. Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the lower Pleistocene site at Venta Micena (Orce, Guadix-Baza Basin, Granada, Spain). Geobios 31:347.CrossRefGoogle Scholar
Bartram, L. E. Jr., and Marean, C. W. 1999. Explaining the “Klasies pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science 26:929.CrossRefGoogle Scholar
Bearder, S. K. 1977. Feeding habits of spotted hyaenas in a woodland habitat. East African Wildlife Journal 15:263280.CrossRefGoogle Scholar
Behrensmeyer, A. K. 2007. Changes through time in carcass survival in the Amboseli ecosystem, southern Kenya. Pp. 137160 in Pickering, T. R., Toth, N., and Schick, K., eds. African taphonomy: a tribute to the career of C. K. “Bob” Brain. Stone Age Institute, Bloomington, Ind. Google Scholar
Binford, L. R. 1981. Bones: ancient men and modern myths. Academic Press, New York.Google Scholar
Blumenschine, R. J. 1988. An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science 15:483502.CrossRefGoogle Scholar
Blumenschine, R. J. 1995. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution 29:2151.CrossRefGoogle Scholar
Blumenschine, R. J., and Marean, C. W. 1993. A carnivore's view of archaeological bone assemblages. In Hudson, J., ed. From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Southern Illinois University, Center for Archaeological Investigations, Occasional Paper 21:273300.Google Scholar
Blumenschine, R. J., Marean, C. W., and Capaldo, S. D. 1996. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of Archaeological Science 23:493507.CrossRefGoogle Scholar
Boydston, E. E., Morelli, T. L., and Holekamp, K. E. 2001. Sex differences in territorial behavior exhibited by the spotted hyena (Crocuta crocuta). Ethology 107:369385.CrossRefGoogle Scholar
Boydston, E. E., Kapheim, K. M., Szykman, M., and Holekamp, K. E. 2003. Individual variation in space use by female spotted hyenas. Journal of Mammalogy 84:10061018.CrossRefGoogle Scholar
Boydston, E. E., Kapheim, K. M., Van Horn, R. C., Smale, L., and Holekamp, K. E. 2005. Sexually dimorphic patterns of space use throughout ontogeny in the spotted hyena (Crocuta crocuta). Journal of Zoology 267:271281.CrossRefGoogle Scholar
Boydston, E. E., Kapheim, K. M., and Holekamp, K. E. 2006. Patterns of den occupation by the spotted hyaena (Crocuta crocuta). African Journal of Ecology 44:7786.CrossRefGoogle Scholar
Brain, C. K. 1981. The hunters or the hunted? University of Chicago Press, Chicago.Google Scholar
Bunn, H. T. 1983. Comparative analysis of modern bone assemblages from a San hunter-gatherer camp in the Kalahari Desert camp, Botswana, and from a spotted hyena den near Nairobi, Kenya. BAR International Series 163:143148.Google Scholar
Capaldo, S. D. 1997. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution 33:555597.CrossRefGoogle ScholarPubMed
Capaldo, S. D. 1998. Simulating the formation of dual-patterned archaeofaunal assemblages with experimental control samples. Journal of Archaeological Science 25:311330.CrossRefGoogle Scholar
Capaldo, S. D., and Blumenschine, R. J. 1994. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. American Antiquity 59:724748.CrossRefGoogle Scholar
Cleghorn, N., and Marean, C. W. 2007. The destruction of skeletal elements by carnivores: the growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages. Pp. 1342 in Pickering, T. R., Toth, N., and Schick, K., eds. African taphonomy: a tribute to the career of C. K. “Bob” Brain. Stone Age Institute, Bloomington, Ind. Google Scholar
Cooper, S. M. 1990. The hunting behaviour of spotted hyaenas (Crocuta crocuta) in a region containing both sedentary and migratory populations of herbivores. African Journal of Ecology 28:113141.CrossRefGoogle Scholar
Cooper, S. M. 1993. Denning behaviour of spotted hyaenas (Crocuta crocuta) in Botswana. African Journal of Ecology 31:178180.CrossRefGoogle Scholar
Cooper, S. M., Holekamp, K. E., and Smale, L. 1999. A seasonal feast: long-term analysis of feeding behaviour in the spotted hyaena (Crocuta crocuta). African Journal of Ecology 37:149160.CrossRefGoogle Scholar
Cruz-Uribe, K. 1991. Distinguishing hyena from hominid bone accumulations. Journal of Field Archaeology 18:467486.Google Scholar
Dart, R. A. 1949. Predatory implemental technique of the Australopithecines. American Journal of Physical Anthropology 7:138.CrossRefGoogle Scholar
Dart, R. A. 1956. The myth of the bone-accumulating hyena. American Anthropologist 58:4061.CrossRefGoogle Scholar
Deane, N. N. 1962. The spotted hyaena (Crocuta crocuta). Lammergeyer 2:2643.Google Scholar
Dominguez-Rodrigo, M., and Barba, R. 2006. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution 50:170194.CrossRefGoogle ScholarPubMed
East, M., Hofer, H., and Turk, A. 1989. Functions of birth dens in spotted hyaenas (Crocuta crocuta). Journal of Zoology 219:690697.CrossRefGoogle Scholar
Egeland, C. P., Pickering, T. R., Dominguez-Rodrigo, M., and Brain, C. K. 2004. Disentangling Early Stone Age palimpsests: determining the functional independence of hominid- and carnivore-derived portions of archaeofaunas. Journal of Human Evolution 47:343357.CrossRefGoogle ScholarPubMed
Eloff, F. C. 1975. The spotted hyaena (Crocuta crocuta Erxleben) in arid regions of southern Africa. Publications of the University of Pretoria 97:3539.Google Scholar
Enloe, J. G., David, F., and Baryshnikov, G. 2000. Hyenas and hunters: zooarchaeological investigations at Prolom II Cave, Crimea. International Journal of Osteoarchaeology 10:310324.3.0.CO;2-B>CrossRefGoogle Scholar
Ewer, R. F. 1973. The carnivores. Cornell University Press, Ithaca, N.Y. Google Scholar
Faith, J. T., and Behrensmeyer, A. K. 2006. Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. Journal of Archaeological Science 33:17181733.CrossRefGoogle Scholar
Faith, J. T., Marean, C. W., and Behrensmeyer, A. K. 2007. Carnivore competition, bone destruction, and bone density. Journal of Archaeological Science 34:20252034.CrossRefGoogle Scholar
Frank, L. G. 1986a. Social organization of the spotted hyaena (Crocuta crocuta) I. Demography. Animal Behaviour 35:15001509.CrossRefGoogle Scholar
Frank, L. G. 1986b. Social organization of the spotted hyaena (Crocuta crocuta) II. Dominance and reproduction. Animal Behaviour 35:15101527.CrossRefGoogle Scholar
Frank, L. G., Glickman, S. E., and Powch, I. 1990. Sexual dimorphism in the spotted hyaena. Journal of Zoology 221:308313.CrossRefGoogle Scholar
Gifford-Gonzalez, D. 1991. Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology 10:215254.CrossRefGoogle Scholar
Gompper, M. E., and Wayne, R. K. 1996. Genetic relatedness among individuals within carnivore societies. Pp. 429452 in Gittleman, J. L., ed. Carnivore behavior, ecology and evolution, Vol. 2. Cornell University Press, Ithaca, N.Y. Google Scholar
Henschel, J. R., and Skinner, J. D. 1987. Social relationships and dispersal patterns in a clan of spotted hyaenas Crocuta crocuta in the Kruger National Park. South African Journal of Zoology 22:1824.Google Scholar
Henschel, J. R., and Skinner, J. D. 1990. Parturition and early maternal care of spotted hyaenas Crocuta crocuta: a case report. Journal of the Zoological Society 220:702704.CrossRefGoogle Scholar
Henschel, J. R., Tilson, R., and von Blottnitz, F. 1979. Implications of a spotted hyaena bone assemblage in the Namib Desert. South African Archeological Bulletin 34:127131.CrossRefGoogle Scholar
Hill, A. 1980. Hyaena provisioning of juvenile offspring at the den. Mammalia 44:594595.Google Scholar
Hill, A. 1984. Hyaenas and hominids: taphonomy and hypothesis testing. Pp. 111128 in Foley, R., ed. Hominid evolution and community ecology. Academic Press, New York.Google Scholar
Hill, A. 1986. A modern hyena den in Amboseli National Park, Kenya. Proceedings of the 8th Panafrican Congress of Prehistory and Quaternary Studies, Nairobi, pp. 137138.Google Scholar
Hill, A. 1989. Bone modification by modern spotted hyenas. Pp. 169178 in Bonnichsen, R. and Sorg, M. H., eds. Bone modification. Center for the Study of the First Americans, University of Maine, Orono.Google Scholar
Hofer, H., and East, M. 1989. Maternal rank and maternal care in spotted hyaenas in a system with fluctuating prey populations. Proceedings, Fifth International Theriological Conference, Rome.Google Scholar
Hofer, H., and East, M. 1993. How predators cope with migratory prey: the commuting system of spotted hyaenas in the Serengeti. III. Attendance and maternal care. Animal Behaviour 46:575589.CrossRefGoogle Scholar
Hofer, H., and East, M. 2003. Behavioral processes and costs of co-existence in female spotted hyenas: a life history perspective. Evolutionary Ecology 17:315331.CrossRefGoogle Scholar
Holekamp, K. E., and Smale, L. 1990. Provisioning and food-sharing by lactating spotted hyenas (Crocuta crocuta). Ethology 86:191202.CrossRefGoogle Scholar
Holekamp, K. E., and Smale, L. 1993. Ontogeny of dominance in free-living spotted hyaenas: juvenile rank relations with other immature individuals. Animal Behaviour 46:451466.CrossRefGoogle Scholar
Holekamp, K. E., and Smale, L. 1998. Dispersal status influences hormones and behavior in the male spotted hyena. Hormones and Behavior 33:205216.CrossRefGoogle ScholarPubMed
Holekamp, K. E., Ogutu, J. O., Dublin, H. T., Frank, L. G., and Smale, L. 1993. Fission of a spotted hyena clan: consequences of prolonged female absenteeism and causes of female emigration. Ethology 93:285299.CrossRefGoogle Scholar
Holekamp, K. E., Smale, L., and Szykman, M. 1996. Rank and reproduction in the female spotted hyaena. Journal of Reproduction and Fertility 108:229237.CrossRefGoogle ScholarPubMed
Holekamp, K. E., Cooper, S. M., Katona, C. I., Berry, N. A., Frank, L. G., and Smale, L. 1997a. Patterns of association among female spotted hyenas (Crocuta crocuta). Journal of Mammalogy 78:5564.CrossRefGoogle Scholar
Holekamp, K. E., Smale, L., Berg, J., and Cooper, S. M. 1997b. Hunting rates and hunting success in the spotted hyena (Crocuta crocuta). Journal of Zoology 242:115.CrossRefGoogle Scholar
Holekamp, K. E., Szykman, M., Boydston, E. E., and Smale, L. 1999. Association of seasonal reproductive patterns with changing food availability in an equatorial carnivore. Journal of Reproduction and Fertility 116:8793.CrossRefGoogle Scholar
Holekamp, K. E., Boydston, E. E., and Smale, L. 2000. Group travel in social carnivores. Pp. 587627 in Boinski, S. and Garber, P., eds. On the move: group travel in primates and other animals. University of Chicago Press, Chicago.Google Scholar
Honer, O. P., Wachter, B., East, M. L., Runyoro, V. A., and Hofer, H. 2005. The effect of prey abundance and foraging tactics on the population dynamics of a social, territorial carnivore, the spotted hyena. Oikos 108:544554.CrossRefGoogle Scholar
Horwitz, L. K. 1998. The influence of prey body size on patterns of bone distribution and representation in a striped hyaena den. Pp. 3142 in Brugal, J.-P., Meignen, L., and Patou-Mathis, M., eds. Économie préhistorique: les comportements de subsistance au paléolithique. Éditions APDCA, Sophia Antipolis, France.Google Scholar
Horwitz, L. K., and Smith, P. 1988. The effects of striped hyaena activity on human remains. Journal of Archaeological Science 15:471481.CrossRefGoogle Scholar
Hughes, A. R. 1954. Hyaenas versus australopithecines as agents of bone accumulation. American Journal of Anthropology 12:468486.CrossRefGoogle Scholar
Hughes, A. R. 1958. Some ancient and recent observations on hyaenas. Koedoe 1:105114.CrossRefGoogle Scholar
Ihaka, R., and Gentleman, R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299314.Google Scholar
Kerbis Peterhans, J. C., and Horwitz, L. K. 1992. A bone assemblage from a striped hyaena (Hyaena hyaena) den in the Negev Desert, Israel. Israel Journal of Zoology 37:225245.Google Scholar
Klein, R. G. 1975. Paleoanthropological implications of the nonarchaeological bone assemblage from Swartklip I, southwestern Cape Province, South Africa. Quaternary Research 5:275288.CrossRefGoogle Scholar
Klein, R. G., and Cruz-Uribe, K. 1984. The analysis of animal bones from archaeological sites. University of Chicago Press, Chicago.Google Scholar
Klein, R. G., Cruz-Uribe, K., Halkett, D., Hart, T., and Parkington, J. 1999. Paleoenvironmental and human behavioral implications of the Boegoeberg 1 Late Pleistocene hyena den, northern Cape Province, South Africa. Quaternary Research 52:393403.CrossRefGoogle Scholar
Kruuk, H. 1972. The spotted hyena: a study of predation and social behavior. University of Chicago Press, Chicago.Google Scholar
Kruuk, H. 1976. Feeding and social behaviour of the striped hyaena (Hyaena vulgaris Desmarest). East African Wildlife Journal 14:91111.CrossRefGoogle Scholar
Lacruz, R., and Maude, G. 2005. Bone accumulations at brown hyena (Parahyaena brunnea) den sites in the Makgadikgadi Pans, northern Botswana: taphonomic, behavioral, and palaeoecological implications. Journal of Taphonomy 3:4353.Google Scholar
Lam, Y. M. 1992. Variability in the behaviour of spotted hyaenas as taphonomic agents. Journal of Archeological Science 19:389406.CrossRefGoogle Scholar
Leakey, L. N., Milledge, S. A. H., Leakey, S. M., Edung, J., Haynes, P., Kiptoo, D. K., and McGeorge, A. 1999. Diet of striped hyaena in northern Kenya. African Journal of Ecology 37:314326.CrossRefGoogle Scholar
Lewis, M. E., and Werdelin, L. 2000. The evolution of spotted hyenas (Crocuta). IUCN Hyaena Specialist Group Newsletter 7:3436.Google Scholar
Lindeque, M., and Skinner, J. D. 1982. Aseasonal breeding in the spotted hyaena (Crocuta crocuta, Erxleben) in southern Africa. African Journal of Ecology 20:271278.CrossRefGoogle Scholar
Lupo, K. D. 1995. Hadza bone assemblages and hyena attrition: an ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology 14:288314.CrossRefGoogle Scholar
Lyman, R. L. 1994. Vertebrate taphonomy. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
MacDonald, D. W. 1976. Food caching by red foxes and some other carnivores. Zeitschrift für Tierpsychologie 42:170185.CrossRefGoogle ScholarPubMed
MacDonald, D. W. 1978. Observations on the behaviour and ecology of the striped hyaena, Hyaena hyaena, in Israel. Israel Journal of Zoology 27:189198.Google Scholar
Manly, B. F. J. 2001. Statistics for environmental science and management. Chapman and Hall/CRC, Boca Raton, Fla.Google Scholar
Marean, C. W. 1998. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 Layer 10 (South Africa). Journal of Human Evolution 35:111136.CrossRefGoogle ScholarPubMed
Marean, C. W., and Assefa, Z. 1999. Zooarchaeological evidence for the faunal exploitation behavior of neandertals and early modern humans. Evolutionary Anthropology 8:138.3.0.CO;2-F>CrossRefGoogle Scholar
Marean, C. W., and Bertino, L. 1994. Intrasite spatial analysis of bone: subtracting the effect of secondary carnivore consumers. American Antiquity 59:748768.CrossRefGoogle Scholar
Marean, C. W., and Frey, C. J. 1997. Animal bones from caves to cities: reverse utility curves as methodological artifacts. American Antiquity 62:698711.CrossRefGoogle Scholar
Marean, C. W., and Spencer, L. M. 1991. Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity 56:645658.CrossRefGoogle Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J., and Capaldo, S. D. 1992. Captive hyaena bone choice and destruction, the Schlepp Effect and Olduvai archaeofaunas. Journal of Archaeological Science 19:101121.CrossRefGoogle Scholar
Marean, C. W., Abe, Y., Frey, C. J., and Randall, R. C. 2000. Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age larger mammal fauna. Journal of Human Evolution 38:197233.CrossRefGoogle ScholarPubMed
Marean, C. W., Dominguez-Rodrigo, M., and Pickering, T. R. 2004. Skeletal element equifinality in zooarchaeology begins with method: the evolution and status of the “shaft critique.” Journal of Taphonomy 2:6998.Google Scholar
Matthews, L. H. 1939. The bionomics of the spotted hyaena Crocuta crocuta, Erxl. Proceedings of the Zoological Society of London A 109:4356.CrossRefGoogle Scholar
McCullagh, P., and Nelder, J. A. 1989. Generalized linear models, second edition. Chapman and Hall, London.CrossRefGoogle Scholar
Mech, L. D. 1970. The wolf: the ecology and behavior of an endangered species. Natural History Press, New York.Google Scholar
Mills, M. G. L. 1983. Mating and denning behaviour of the brown hyaena and comparison with other Hyaenidae. Zeitschrift für Tierpsychologie 63:331342.CrossRefGoogle Scholar
Mills, M. G. L. 1984. The comparative behavioural ecology of the brown hyaena (Hyaena brunnea) and the spotted hyaena (Crocuta crocuta) in the southern Kalahari. Koedoe Supplement 27:237247.Google Scholar
Mills, M. G. L. 1990. Kalahari hyaenas: the comparative behavioural ecology of two species. Allen and Unwin, London.CrossRefGoogle Scholar
Mills, M. G. L., and Mills, M. E. J. 1977. The analysis of bones collected at hyaena dens in the Kalahari Gemsbok National Parks (Mammalia: Carnivora). Annals of the Transvaal Museum 30:145155.Google Scholar
Owens, M. J., and Owens, D. D. 1978. Feeding ecology and its influence on social organization in brown hyenas (Hyaena brunnea, Thunberg) of the central Kalahari Desert. East African Wildlife Journal 16:113135.CrossRefGoogle Scholar
Owens, D. D., and Owens, M. J. 1979. Communal denning and clan associations in brown hyaenas (Hyaena brunnea, Thunberg) of the Central Kalahari Desert. African Journal of Ecology 17:3544.CrossRefGoogle Scholar
Palmqvist, P., and Arribas, A. 2001a. Taphonomic decoding of the paleobiological information locked in a lower Pleistocene assemblage of large mammals. Paleobiology 27:512530.2.0.CO;2>CrossRefGoogle Scholar
Palmqvist, P., and Arribas, A. 2001b. An overview of the taphonomy and paleoecology of the assemblage of large mammals preserved in lower Pleistocene deposits from Venta Micena (Guadix-Baza basin, Spain). Paleontologia Evolucio 32–33:3758.Google Scholar
Palmqvist, P., Martinez-Navarro, B., and Arribas, A. 1996. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22:514534.CrossRefGoogle Scholar
Percival, A. B. 1924. A game ranger's notebook. Nisbet, London.Google Scholar
Pickering, T. R. 2002. Reconsideration of criteria for differentiating faunal assemblages accumulated by hyenas and hominids. International Journal of Osteoarchaeology 12:127141.CrossRefGoogle Scholar
Pickering, T. R., Clarke, R. J., and Moggi-Cecchi, J. 2004. Role of carnivores in the accumulation of the Sterkfontein Member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). American Journal of Physical Anthropology 125:115.CrossRefGoogle ScholarPubMed
Pobiner, B. L., and Blumenschine, R. J. 2003. A taphonomic perspective on Oldowan hominid encroachment on the carnivoran paleoguild. Journal of Taphonomy 1:115141.Google Scholar
Pokines, J. T., and Kerbis Peterhans, J. C. 2007. Spotted hyena (Crocuta crocuta) den use and taphonomy in the Masai Mara National Reserve, Kenya. Journal of Archaeological Science 34:19141931.CrossRefGoogle Scholar
Potts, R. 1988. Early hominid activities at Olduvai. Aldine de Guyter, New York.Google Scholar
Reitz, E. J., and Wing, E. S. 1999. Zooarchaeology. Cambridge University Press, Cambridge.Google Scholar
Schaller, G. B. 1972. The Serengeti lion. University of Chicago Press, Chicago.Google Scholar
Scott, L., and Klein, R. G. 1981. A hyena-accumulated bone assemblage from Late Holocene deposits at Deelpan, Orange Free State. Annals of the South African Museum 86:217227.Google Scholar
Selvaggio, M. M. 1994. Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. Journal of Human Evolution 27:215228.CrossRefGoogle Scholar
Selvaggio, M. M., and Wilder, J. 2001. Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science 28:465470.CrossRefGoogle Scholar
Sillero-Zubiri, C., and Gottelli, D. 1992. Population ecology of spotted hyaena in an equatorial mountain forest. African Journal of Ecology 30:292300.CrossRefGoogle Scholar
Skinner, J. D., and Ilani, G. 1979. The striped hyaena Hyaena hyaena of the Judean and Negev deserts and a comparison with the brown hyaena H. brunnea . Israel Journal of Zoology 28:229232.Google Scholar
Skinner, J. D., and van Aarde, R. J. 1991. Bone collecting by brown hyaenas Hyaena brunnea in the central Namib Desert, Namibia. Journal of Archaeological Science 18:513523.CrossRefGoogle Scholar
Skinner, J. D., Davis, S., and Ilani, G. 1980. Bone collecting by striped hyaenas, Hyaena hyaena, in Israel. Paleontologica Africana 23:99104.Google Scholar
Skinner, J. D., Henschel, J. R., and van Jaarsveld, A. S. 1986. Bone-collecting habits of spotted hyaenas Crocuta crocuta, in the Kruger National Park. South African Journal of Zoology 21:303308.CrossRefGoogle Scholar
Skinner, J. D., Haupt, M. A., Hoffmann, M., and Dott, H. M. 1998. Bone collection by brown hyaenas Hyaena brunnea in the Namib Desert: rate of accumulation. Journal of Archeological Science 25:6971.CrossRefGoogle Scholar
Smale, L., Frank, L. G., and Holekamp, K. E. 1993. Ontogeny of dominance in free-living spotted hyaenas: juvenile rank relations with adult females and immigrant males. Animal Behaviour 46:467477.CrossRefGoogle Scholar
Smale, L., Nunes, S., and Holekamp, K. E. 1997. Sexually dimorphic dispersal in mammals: patterns, causes, and consequences. Advances in the Study of Behavior 26:181250.CrossRefGoogle Scholar
Stiner, M. C. 1991a. Food procurement and transport by human and non-human predators. Journal of Archaeological Science 18:455482.CrossRefGoogle Scholar
Stiner, M. C. 1991b. The faunal remains from Grotta Guattari: a taphonomic perspective. Current Anthropology 32:103117.CrossRefGoogle Scholar
Stiner, M. C. 1992. Overlapping species “choice” by Italian Upper Pleistocene predators. Current Anthropology 33:433451.CrossRefGoogle Scholar
Stiner, M. C. 1994. Honor among thieves. Princeton University Press, Princeton, N.J. Google Scholar
Sutcliffe, A. J. 1970. Spotted hyaena: crusher, gnawer, digester and collector of bones. Nature 227:11101113.CrossRefGoogle ScholarPubMed
Szykman, M., Engh, A. L., Van Horn, R. C., Funk, S. M., Scribner, K. T., and Holekamp, K. E. 2001. Association patterns among male and female spotted hyenas (Crocuta crocuta) refleet male mate choice. Behavioral Ecology and Sociobiology 50:231238.CrossRefGoogle Scholar
Tilson, R. L., and Hamilton, W. J. 1984. Social dominance and feeding patterns of spotted hyaenas. Animal Behaviour 32:215224.CrossRefGoogle Scholar
Trinkel, M., Fleischmann, P. H., Steindorfer, A. F., and Kastberger, G. 2004. Spotted hyenas (Crocuta crocuta) follow migratory prey. Seasonal expansion of a clan territory in Etosha, Namibia. Journal of Zoology 264:125133.CrossRefGoogle Scholar
Trinkel, M., Fleischmann, P. H., and Kastberger, G. 2006. Comparison of land-use strategies of spotted hyenas (Crocuta crocuta, Erxleben) in different ecosystems. African Journal of Ecology 44:537539.CrossRefGoogle Scholar
Van Horn, R. C., Engh, A. L., Scribner, K. T., Funk, S. M., and Holekamp, K. E. 2004. Behavioural structuring of relatedness in the spotted hyena (Crocuta crocuta) suggests direct fitness benefits of clan-level cooperation. Molecular Ecology 13:449458.CrossRefGoogle ScholarPubMed
van Lawick-Goodall, H., and van Lawick-Goodall, J. 1971. Innocent killers. Houghton Mifflin, Boston.Google Scholar
van Valkenburgh, B., and Binder, W. J. 2000. Biomechanics and feeding behaviour in carnivores: comparative and ontogenetic studies. Pp. 223235 in Domenici, P. and Blake, R. W., eds. Biomechanics in animal behaviour. BIOS Scientific Publishers, Oxford.Google Scholar
Verheyen, R. 1951. Contribution à l'étude éthologique des mammifères du Parc national de l'Upemba. Institut des Parcs Nationaux du Congo Belge, Brussels.Google Scholar
Wagner, A. P. 2006. Behavioral ecology of the striped hyena (Hyaena hyaena). . Montana State University, Bozeman.Google Scholar
Wambuguh, O. 2008. Dry wildebeest carcasses in the African savannah: the utilization of a unique resource. African Journal of Ecology 46:515522.CrossRefGoogle Scholar
Watson, R. M. 1965. Observations on the behaviour of young spotted hyaena (Crocuta crocuta) in the burrow. East African Wildlife Journal 3:122123.CrossRefGoogle Scholar
Watts, H. E., and Holekamp, K. E. 2009. Ecological determinants of survival and reproduction in the spotted hyena. Journal of Mammalogy (in press).CrossRefGoogle Scholar
Werdelin, L., and Solounias, N. 1991. The Hyaenidae: taxonomy, systematics and evolution. Fossils and Strata 30:1104.CrossRefGoogle Scholar
White, P. A. 2007. Costs and strategies of communal den use vary by rank for spotted hyaenas, Crocuta crocuta . Animal Behaviour 73:149156.CrossRefGoogle Scholar