Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T05:14:17.887Z Has data issue: false hasContentIssue false

Using ecological niche modeling for quantitative biogeographic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains

Published online by Cambridge University Press:  08 April 2016

Kaitlin Clare Maguire
Affiliation:
Department of Integrative Biology, University of California, Berkeley, California 94720. E-mail: kcmaguire@berkeley.edu
Alycia L. Stigall
Affiliation:
Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio 45701. E-mail: stigall@ohio.edu

Abstract

The subfamily Equinae in the Great Plains region of North America underwent a dramatic radiation and subsequent decline as climate changed from warm and humid in the middle Miocene to cooler and more arid conditions during the late Miocene. Here we use ecological niche modeling (ENM), specifically the GARP (Genetic Algorithm using Rule-set Prediction) modeling system, to reconstruct the geographic distribution of individual species during two time slices from the middle Miocene through early Pliocene. This method combines known species occurrence points with environmental parameters inferred from sedimentological variables to model each species' fundamental niche. The geographic range of each species is then predicted to occupy the geographic area within the study region wherever the set of environmental parameters that constrain the fundamental niche occurs. We analyze changes in the predicted distributions of individual species between time slices in relation to Miocene/Pliocene climate change. Specifically, we examine and compare distribution patterns for two time slices that span the period from the mid-Miocene (Barstovian) Climatic Optimum into the early Pliocene (Blancan) to determine whether habitat fragmentation led to speciation within the clade and whether species survival was related to geographic range size. Patchy geographic distributions were more common in the middle Miocene when speciation rates were high. During the late Miocene, when speciation rates were lower, continuous geographic ranges were more common. Equid species tracked their preferred habitat within the Great Plains region as well as regionally throughout North America. Species with larger predicted ranges preferentially survived the initial cooling event better than species with small geographic ranges. As climate continued to deteriorate in the late Miocene, however, range size became irrelevant to survival, and extinction rates increased for species of all range sizes. This is the first use of ENM and GARP in the continental fossil record. This powerful quantitative biogeographic method offers great promise for studies of other taxa and geologic intervals.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2002. Synonymies and reidentifications of North American fossil mammals. The Paleobiology Database http://paleodb.org/ Google Scholar
Alroy, J. 2003. A quantitative North American mammalian timescale. www.nceas.ucsb.edu/~alroy/TimeScale.html Google Scholar
Alroy, J. 2007. Synonymies and reidentifications of North American fossil vertebrates and so forth. The Paleobiology Database, http://paleodb.org/ Google Scholar
Anderson, R. P., Peterson, A. T., and Gómez-Laverde, M. 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. OIKOS 98:316.CrossRefGoogle Scholar
Axelrod, D. I. 1985. Rise of the grassland biome, Central North America. Botanical Review 51:163201.CrossRefGoogle Scholar
Barnosky, A. D., and Kraatz, B. P. 2007. The role of climatic change in the evolution of mammals. Bioscience 57:523532.CrossRefGoogle Scholar
Berger, W. H. 2007. Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Research, Part II, Tropical Studies in Oceanography 54:23992421.CrossRefGoogle Scholar
Bernor, R. L., and Armour-Chelu, M. 1999. Family Equidae. Pp. 193202 in Rössner, G. E. and Heissig, K., eds. The Miocene: land mammals of Europe. Dr. Friedrich Pfeil, Munich.Google Scholar
Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D. 2005. Miocene Mammal Mapping Project (MIOMAP). University of California Museum of Paleontology, http://www.ucmp.berkeley.edu/miomap/ Google Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.CrossRefGoogle ScholarPubMed
Cerling, T. E., and Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates. In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., eds. Climate change in continental isotopic records. Geophysical Monograph 78:217231. American Geophysical Union, Washington, D.C. Google Scholar
Cerling, T. E., Quade, J., Wang, Y., and Bowman, J. R. 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 341:138139.CrossRefGoogle Scholar
Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R. 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55:34033405.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.CrossRefGoogle Scholar
Chapin, C. E., and Kelley, S. A. 1997. The Rocky Mountain erosion surface in the Front Range of Colorado. Pp. 101113 in Bolyard, D. W. and Sonnenberg, S. A., eds. Geologic history of the Colorado Front Range. RMS-AAPG Field Trip No. 7. Rocky Mountain Association of Geologists, Denver.Google Scholar
Clouthier, S. G. 1994. Carbon and nitrogen isotopic evidence for tertiary grassland distributions and the evolution of hypsodonty in North American Great Plains horses (32 Ma to recent). . Michigan State University, East Lansing.Google Scholar
Condon, S. M. 2005. Geological studies of the Platte River, south-central Nebraska and adjacent areas; geologic maps, subsurface study, and geologic history. U.S. Geological Survey Professional Paper 1706.Google Scholar
Cooke, P. J., Nelson, C. S., and Crundwell, M. P. 2008. Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water-depth, Site 593, Southwest Pacific. New Zealand Journal of Geology and Geophysics 51:122.CrossRefGoogle Scholar
Costeur, L., and Legendre, S. 2008. Spatial and temporal variation in European Neogene large mammals diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 261:160176.CrossRefGoogle Scholar
Damuth, J. D., Fortelius, M., Andrews, P., Badgley, C., Hadley, E. A., Hixon, S., Janis, C. M., Madden, R. H., Reed, K., Smith, J. M., Theodor, J. M., van Dam, J. A., Van Valkenburgh, B., and Werdelin, L. 2002. Reconstructing mean annual precipitation, based on mammalian dental morphology and local species richness. Journal of Paleontology 22(Suppl. 3):48A.Google Scholar
Elias, S. A., and Matthews, J. V. 2002. Arctic North American seasonal temperatures from the latest Miocene to the Early Pleistocene, based on mutual climatic range analysis of fossil beetle assemblage. Canadian Journal of Earth Sciences 39:911920.CrossRefGoogle Scholar
ESRI Inc. 2006. ArcGIS 9.2 Release. Redlands, Calif. Google Scholar
Feria, T. P., and Peterson, A. T. 2002. Prediction of bird community composition based on point-occurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Diversity and Distributions 8:4956.CrossRefGoogle Scholar
Flanagan, K. M., and Montagne, J. 1993. Neogene stratigraphy and tectonics of Wyoming. In Snoke, A. W., Steidtmann, J. R., and Roberts, S. M., eds. Geology of Wyoming. Geological Survey of Wyoming Memoir 5:572607.Google Scholar
Fox, D. L., and Fisher, D. C. 2004. Dietary reconstruction of Miocene Gomphotherium (Mammalia, Proboscidea) from the Great Plains region, USA, based on the carbon isotope composition of tusk and molar enamel. Palaeogeography, Palaeoclimatology, Palaeoecology 206:311335.CrossRefGoogle Scholar
Fox, D. L., and Koch, P. L. 2003. Tertiary history of C 4 biomass in the Great Plains, USA. Geology 31:809812.CrossRefGoogle Scholar
Friedli, H., Lötshcer, H., Oeschger, H., Siegenthaler, U., and Stauffer, B. 1986. 13C/12C ratio of atmospheric CO 2 in the past two centuries. Nature 324:237238.CrossRefGoogle Scholar
Gabel, M. L., Backlund, D. C., and Haffner, J. 1998. The Miocene macroflora of the northern Ogallala Group, northern Nebraska and southern South Dakota. Journal of Paleontology 72:388397.CrossRefGoogle Scholar
Gamble, T., Simons, A. M., Colli, G. R., and Vitt, L. J. 2008. Tertiary climate change and the diversification of the Amazonian gecko genus Gonatodes (Sphaerodactylidae, Squamata). Molecular Phylogenetics and Evolution 46:269277.CrossRefGoogle ScholarPubMed
Goodwin, R. G., and Diffendal, R. F. 1987. Paleohydrology of some Ogallala (Neogene) streams in the southern panhandle of Nebraska. In Ethridge, R. G., Flores, R. M., Harvey, M. D., and Weaver, J. N. eds. Recent developments in fluvial sedimentology. Society of Economic Paleontologists and Mineralogists Special Publication 39:149157.Google Scholar
Grinnell, J. 1917. Field tests of theories concerning distributional control. American Naturalist 51:115128.CrossRefGoogle Scholar
Hendricks, J. R., Lieberman, B. S., and Stigall, A. L. 2008. Using GIS to study the paleobiogeography of soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264:163175.CrossRefGoogle Scholar
Hulbert, R. C. Jr. 1993. Taxonomic evolution in North American Neogene horses (Subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology 19:216234.CrossRefGoogle Scholar
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quaternary Biology 22:415427.CrossRefGoogle Scholar
Illoldi-Rangel, P., and Sánchez-Cordero, V. 2004. Predicting distributions of Mexican mammals using ecological niche modeling. Journal of Mammalogy 85:658662.CrossRefGoogle Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2004. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology 207:371398.CrossRefGoogle Scholar
Jenny, H. J. 1941. Factors of soil formation. McGraw-Hill, New York.CrossRefGoogle Scholar
Kelly, T. S. 1995. New Miocene horses from the Caliente Formation, Cuyama Valley Badlands, California. Natural History Museum of Los Angeles County, Contributions in Science 455:133.Google Scholar
Kelly, T. S. 1998. New Middle Miocene equid crania from California and their implications for the phylogeny of the Equini. Natural History Museum of Los Angeles County, Contributions in Science 473:143.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1996. The quality of the fossil record: Populations, species and communities. Annual Review of Ecology and Systematics 24:433464.Google Scholar
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus, M. L. 2007. Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin 119:14491461.CrossRefGoogle Scholar
Lim, B. K., Peterson, A. T., and Engstrom, M. D. 2002. Robustness of ecological niche modeling algorithms for mammals in Guyana. Biodiversity and Conservation 11:12371246.CrossRefGoogle Scholar
Lomolino, M. V., Riddle, B. R., and Brown, J. H. 2006. Biogeography, 3d ed. Sinauer, Sunderland, Mass.Google Scholar
Lyell, C. 1830. Principles of geology, being an attempt to explain the former changes of the earth's surface, by reference to causes now in operation, Vol. 1. J. Murray, London.CrossRefGoogle Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the family Equidae. Cambridge University Press, Cambridge.Google Scholar
MacFadden, B. J., and Hulbert, R. C. Jr. 1988. Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature 336: 466–68.CrossRefGoogle Scholar
MacGinitie, H. D. 1962. The Kilgore flora, a late Miocene flora from Northern Nebraska. University of California Publications in Geological Sciences 35:67158.Google Scholar
Maguire, K. C. 2008. Paleobiogeography of Miocene to Pliocene Equinae of North America: a phylogenetic biogeographic and niche modeling approach. . Ohio University, Athens.Google Scholar
Maguire, K. C., and Stigall, A. L. 2008. Paleobiogeography of Miocene Equinae of North America: a phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology 267:175184.CrossRefGoogle Scholar
Markwick, P. J. 1996. Late Cretaceous to Pleistocene climates: nature of the transition from a ‘hot-house’ to an ‘ice-house’ world. . University of Chicago, Chicago.Google Scholar
Markwick, P. J. 2007. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons. Pp. 251312 in Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., eds. Deep-time perspectives on climate change. The Micropalaeontological Society and the Geological Society of London, London.Google Scholar
Martin, J. E. 1984. A crocodilian from the Miocene (Hemingfordian) Sheep Creek Formation in northwestern Nebraska. Proceedings of the South Dakota Academy of Science 63:4855.Google Scholar
Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York.Google Scholar
Minitab Inc. 2003. Minitab Release 14. State College, Penn.Google Scholar
Morrison, R. B. 1987. Long-term perspective: changing rates and types of Quaternary surficial processes: erosion-deposition-stability cycles. In Grag, W. L., ed. Geomorphic systems of North America: Geological Society of America Centennial Special 2:163210.Google Scholar
Nunes, M. F. C., Galetti, M., Marsden, S., Pereira, R. S., and Peterson, A. T. 2007. Are large-scale distributional shifts of the blue-winged macaw (Primolius maracana) related to climate change? Journal of Biogeography 34:816827.CrossRefGoogle Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38:328336.CrossRefGoogle Scholar
Owen, R. 1850. On the fossil Crocodilia of England. Edinburgh New Philosophical Journal 49:248250.Google Scholar
Passey, B. H., Cerling, T. E., Perkins, M. E., Voorhies, M. R., Harris, J. M., and Tucker, S. T. 2002. Environmental change in the Great Plains: an isotopic record from fossil horses. The Journal of Geology 110:123140.CrossRefGoogle Scholar
Peterson, A. T. 2001. Predicting species' geographic distributions based on ecological niche modeling. Condor 103:599605.CrossRefGoogle Scholar
Peterson, A. T., and Cohoon, K. P. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modeling 117:159164.CrossRefGoogle Scholar
Peterson, A. T., and Vieglais, D. A. 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51:363371.CrossRefGoogle Scholar
Peterson, A. T., Soberón, J., Sánchez-Cordero, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:12651267.CrossRefGoogle ScholarPubMed
Peterson, A. T., Sánchez-Cordero, V., Soberón, J., Bartley, J., Buddemeier, R. W., and Navarro-Sigüenza, A. G. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling 144:2130.CrossRefGoogle Scholar
Peterson, A. T., Ball, L. G., and Cohoon, K. P. 2002. Predicting distributions of Mexican birds using ecological niche modeling methods. Ibis 144:E27E32.CrossRefGoogle Scholar
Prado, J. L., and Alberdi, M. T. 1996. A cladistic analysis of the horses of the tribe Equini. Palaeontology 39:663680.Google Scholar
Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., Peterson, A. T. 2003. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837841.CrossRefGoogle ScholarPubMed
Retallack, G. J. 1994. The environmental factor approach to the interpretation of paleosols. In Luxmore, R. J., ed. Factors of soil formation: a fiftieth anniversary retrospective. SSA Special Publication 33:3164. Social Science Society of America, Madison, Wisc. Google Scholar
Retallack, G. J. 1997. Neogene expansion of the North American Prairie. Palaios 12:380390.CrossRefGoogle Scholar
Retallack, G. J. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33:333336.CrossRefGoogle Scholar
Retallack, G. J. 2007. Cenozoic paleoclimate on land in North America. Journal of Geology 115:271294.CrossRefGoogle Scholar
Rocchi, S., Di Vincenzo, G., and LeMasurier, W. E. 2006. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geological Society of America Bulletin 118:9911005.CrossRefGoogle Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.CrossRefGoogle Scholar
Scott, G. R. 1982. Paleovalley and geologic map of northeastern Colorado. U.S. Geological Survey Miscellaneous Investigation Series Map I-378.Google Scholar
Shotwell, J. A. 1961. Late Tertiary biogeography of horses in the Northern Great Basin. Journal of Paleontology 35:203217.Google Scholar
Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.CrossRefGoogle Scholar
Skinner, M. F., and MacFadden, B. J. 1977. Cormohipparion n. gen. (Mammalia, Equidae) from the North American Miocene (Barstovian–Clarendonian). Journal of Paleontology 51:912926.Google Scholar
Stanley, S. M. 1974. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Systematic Zoology 22:486506.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution, pattern and process. W. H. Freeman, San Francisco, Calif. Google Scholar
Steven, T. A., Evanoff, E., and Yuhas, R. H., 1997. Middle and Late Cenozoic tectonic and geomorphic development of the Front Range of Colorado. Pp. 115124 in Bolyard, E. W. and Sonnenberg, S. A., eds. Geologic history of the Colorado Front Range. RMS-AAPG Field Trip No. 7. Rocky Mountain Association of Geologists, Denver, Colo. Google Scholar
Stigall, A. L. 2008. Tracking species in space and time: assessing the relationships between paleobiogeography, paleoecology, and macroevolution. In Kelly, P. H. and Bambach, R. K., eds. From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontological Society Papers 14:227242.CrossRefGoogle Scholar
Stigall, A. L. 2009. Integrating GIS and phylogenetic biogeography to assess species-level biogeographic patterns: a case study of Late Devonian faunal dynamics. In Upchurch, P., McGowan, A., and Slater, C. eds. Palaeogeography and palaeobiogeography: biodiversity in space and time. CRC Press, Boca Raton, Fla. (in press).Google Scholar
Stigall, A. L., and Lieberman, B. S. 2006. Quantitative paleobiogeography: GIS, phylogenetic biogeographic analysis, and conservation insights. Journal of Biogeography 33:20512060.CrossRefGoogle Scholar
Stigall Rode, A. L. 2005. The application of geographic information systems to paleobiogeography: implications for the study of invasions and mass extinctions. In Lieberman, B. S. and Stigall Rode, A. L., eds. Paleobiogeography: generating new insights into the coevolution of the earth and its biota. Paleontological Society Papers 11:7788.CrossRefGoogle Scholar
Stigall Rode, A. L., and Lieberman, B. S. 2005. Using environmental niche modeling to study the Late Devonian biodiversity crisis. Pp. 93127 in Over, D. J., Morrow, J. R., and Wignall, P. B., eds. Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach (Developments in Paleontology and Stratigraphy, Vol. 20). Elsevier, Amsterdam.Google Scholar
Stockwell, D. R. B., and Noble, I. R. 1992. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematical and COMPUTER Simulation 33:385390.CrossRefGoogle Scholar
Stockwell, D. R. B., and Peters, D. 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13:143158.CrossRefGoogle Scholar
Stockwell, D. R. B., and Peterson, A. T. 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling 148:113.CrossRefGoogle Scholar
Strömberg, C. A. 2004. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207:239275.CrossRefGoogle Scholar
Swinehart, J. B., and Diffendal, R. F. 1989. Geology of the pre-dune strata. Pp. 2942 in Bleed, A. S. and Flowerday, C. A., eds. An atlas of the Sand Hills (Resource Atlas 5b). Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.Google Scholar
Thomasson, J. R. 1980. Archaeoleersia nebraskensis gen. et sp. nov. (Gramineae-Oryzeae), a new fossil grass from the late Tertiary of Nebraska. American Journal of Botany 67:876882.CrossRefGoogle Scholar
Thomasson, J. R. 1983. Carex graceii sp. n., Cyperocarpus eliasii sp. n., Cyperocarpus terrestris sp. n., and Cyperocarpus pulcherrima sp. n. (Cyperaceae) from the Miocene of Nebraska. American Journal of Botany 70:435449.CrossRefGoogle Scholar
Thomasson, J. R. 1990. Fossil plants from the late Miocene Ogallala Formation of central North America: possible paleoenvironmental and biostratigraphic significance. Pp. 99114 in Gustavson, T. C., ed. Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw Ogallala Formations, Great Plains. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
Thomasson, J. R. 1991. Sediment-borne “seeds” from Sand Creek, northwestern Kansas: taphonomic significance and paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 85:213225.CrossRefGoogle Scholar
Thomasson, J. R. 2005. Berriochloa gabeli and Berriochloa huletti (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebraska and Kansas. Journal of Paleontology 79:185199.2.0.CO;2>CrossRefGoogle Scholar
Tieszen, L. L., and Boutton, T. W. 1989. Stable carbon isotopes in terrestrial ecosystems research. Pp. 167195 in Rundel, P. W., Ehleringer, J. R., and Nagy, N. A., eds. Stable isotopes in ecological research. Springer, New York.CrossRefGoogle Scholar
Trimble, D. E. 1980. The geologic story of the Great Plains. Geological Survey Bulletin 1493. U.S. Government Printing Office, Washington, D.C. Google Scholar
Vrba, E. S. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology 1:283300.CrossRefGoogle Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary-theory. Journal of Mammalogy 73:128.CrossRefGoogle Scholar
Wang, Y., Cerling, T. E., and MacFadden, B. J. 1994. Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem change in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107:269279.CrossRefGoogle Scholar
Ward, P. A. III, and Carter, B. J. 1999. Rates of stream incision in the middle part of the Arkansas River basin based on late Tertiary to mid-Pleistocene volcanic ash. Geomorphology 27:205228.CrossRefGoogle Scholar
Webb, S. D. 1969. Extinction-origination equilibria in late Cenozoic land mammals of North America. Evolution 23:688702.CrossRefGoogle ScholarPubMed
Webb, S. D. 1983. The rise and fall of the Late Miocene ungulate fauna in North America. Pp. 267306 in Nitecki, M. H., ed. Coevolution. University of Chicago Press, Chicago.Google Scholar
Webb, S. D. 1984. Ten million years of mammal extinctions in North America. Pp. 189210 in Martin, P. S. and Klein, R. G., eds. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson.Google Scholar
Webb, S. D. 1987. Community patterns in extinct terrestrial vertebrates. Pp. 439466 in Gee, J. H. R. and Giller, P. S., eds. Organization of communities past and present. Blackwell, Oxford.Google Scholar
Webb, S. D., Hulbert, R. C. Jr., and Lambert, W. D., 1995. Climatic implications of large-herbivore distributions in the Miocene of North America. Pp. 91108 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Wheeler, E. F., and Matten, L. C. 1977. Fossil wood from an upper Miocene locality in northeastern Colorado. Botanical Gazette 138:112118.CrossRefGoogle Scholar
Wiley, E. O., and Mayden, R. L. 1985. Species and speciation in phylogenetic systematics, with examples from the North-American fish fauna. Annals of the Missouri Botanical Garden 72:596635.CrossRefGoogle Scholar
Wiley, E. O., McNyset, K. M., Townsend, A. T., Robins, C. R., and Stewart, A. M. 2003. Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography 16:120127.CrossRefGoogle Scholar
Williams, C. J., Mendell, E. K., Murphy, J., Court, W. M., Johnson, A. H., and Richter, S. L. 2008. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261:160176.CrossRefGoogle Scholar
Woodburne, M. O. 1959. A fossil alligator from the lower Pliocene of Oklahoma and its climatic significance. Papers of the Michigan Academy of Science, Arts, and Letters 44:4750.Google Scholar
Woodburne, M. O. 1996. Reappraisal of the Cormohipparion from the Valentine Formation, Nebraska. American Museum Novitates 3163:156.Google Scholar
Woodburne, M. O. 2007. Phyletic diversification of the Cormohipparion occidentale complex (Mammalia; Perissodactyla, Equidae), Late Miocene, North America, and the origin of the Old World Hippotherium datum. Bulletin of the American Museum of Natural History 306:1138.CrossRefGoogle Scholar
Woodruff, R., Savin, S. M., and Douglas, R. G. 1981. Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications. Science 212:665668.CrossRefGoogle ScholarPubMed
Zachos, J. C., Pagani, M., Stone, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed
Zubakov, V. A., and Borzenkova, I. I. 1990. Global palaeoclimate of the late Cenozoic. Elsevier, Amsterdam.Google Scholar
Supplementary material: PDF

Maguire and Stigall supplementary material

Supplementary Material

Download Maguire and Stigall supplementary material(PDF)
PDF 468.8 KB
Supplementary material: PDF

Maguire and Stigall supplementary material

Supplementary Material

Download Maguire and Stigall supplementary material(PDF)
PDF 1.1 MB