Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T14:11:28.379Z Has data issue: false hasContentIssue false

Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic

Published online by Cambridge University Press:  08 April 2016

Carl Simpson
Affiliation:
Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany. E-mail: Carl.Simpson@mfn-berlin.de
Paul G. Harnik
Affiliation:
Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637. E-mail: pharnik@uchicago.edu

Abstract

Abundance is one of the primary factors believed to influence extinction yet little is known about its relationship to extinction rates over geologic time. Using data from the Paleobiology Database we show that abundance was an important factor in the extinction dynamics of marine bivalve genera over the post-Paleozoic. Contrary to expectations, our analyses reveal a nonlinear relationship between abundance and extinction rates, with rare and abundant genera exhibiting rates elevated over those of genera of moderate abundance. This U-shaped pattern is a persistent feature of the post-Paleozoic history of marine bivalves and provides one possible explanation for why we find strong support for heterogeneous extinction rates among genera grouped by similarity in abundance yet effectively no net relationship among these rates when using models of directional selection on abundance.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Alroy, J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology 31:607623.CrossRefGoogle Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.Google Scholar
Cardillo, M. 2003. Biological determinants of extinction risk: why are smaller species less vulnerable? Animal Conservation 6:6369.Google Scholar
Diamond, J. M. 1984. “Normal” extinctions of isolated populations. Pp. 191246 in Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26 (Suppl. to No. 4):74102.CrossRefGoogle Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.CrossRefGoogle Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Gaston, K. J. 1994. Rarity. Chapman and Hall, London.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Hansen, T. A. 1988. Early Tertiary radiation of marine mollusks and the long-term effects of the Cretaceous-Tertiary extinction. Paleobiology 14:3751.Google Scholar
Harcourt, A. H., Coppeto, S. A., and Parks, S. A. 2002. Rarity, specialization and extinction in primates. Journal of Biogeography 29:445456.Google Scholar
Harnik, P. G. 2007. Multiple factors in extinction risk: testing models of extinction selectivity in Eocene bivalves using path analysis. Geological Society of America Abstracts with Programs 39(6):369.Google Scholar
Harnik, P. G. 2009. Unveiling rare diversity by integrating museum, literature, and field data. Paleobiology 35:190208.Google Scholar
Harper, J. L. 1977. Population biology of plants. Academic Press, New York.Google Scholar
Hayek, L.-A. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J. Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
IUCN. 2001. IUCN Red List categories and criteria, Version 3.1. IUCN, Gland, Switzerland.Google Scholar
Ives, A. R., and Carpenter, S. R. 2007. Stability and diversity of ecosystems. Science 317:5862.CrossRefGoogle ScholarPubMed
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.Google Scholar
Jablonski, D., and Finarelli, J. A. 2009. Congruence of morphologically defined genera with molecular phylogenies. Proceedings of the National Academy of Sciences USA 106:82628266.Google Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the Pull of the Recent on the history of marine diversity. Science 300:11331135.CrossRefGoogle ScholarPubMed
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P., eds. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America.Google Scholar
Jones, K. E., Purvis, A., and Gittleman, J. L. 2003. Biological correlates of extinction risk in bats. American Naturalist 161:601614.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914917.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 116209 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record: populations, species, and communities. Annual Review of Ecology and Systematics 26:269299.Google Scholar
Kiessling, W. 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410413.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time. Paleobiology 33:414434.CrossRefGoogle Scholar
Kiessling, W., and Baron-Szabo, R. C. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195223.Google Scholar
Kotiaho, J. S., Kaitala, V., Kolmonen, A., and Paivinen, J. 2005. Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences USA 102:19631967.Google Scholar
Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142:911927.Google Scholar
Layou, K. M. 2007. A quantitative null model of additive diversity partitioning: examining the response of beta diversity to extinction. Paleobiology 33:116124.Google Scholar
Liow, L. H., and Stenseth, N. C. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.Google ScholarPubMed
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.CrossRefGoogle Scholar
Lockwood, R., and Barbour Wood, S. L. 2007. Exploring the link between rarity and molluscan extinction in the Cenozoic record of the U.S. Coastal Plain. Geological Society of America Abstracts with Programs 39(6):369.Google Scholar
McCann, K. S. 2000. The diversity-stability debate. Nature 405:228233.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.Google Scholar
Meldahl, K. H. 1990. Sampling, species abundance, and the stratigraphic signature of mass extinction: a test using Holocene tidal flat mollusks. Geology 18:890893.2.3.CO;2>CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302:10301032.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.Google Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.Google Scholar
Pimm, S. L., Jones, H. L., and Diamond, J. 1988. On the risk of extinction. American Naturalist 132:757785.Google Scholar
Plotnick, R. E., and Wagner, P. J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.CrossRefGoogle Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.CrossRefGoogle Scholar
Preston, F. W. 1948. The commonness, and rarity, of species. Ecology 29:254283.Google Scholar
Purvis, A., Jones, K. E., and Mace, G. M. 2000. Extinction. Bioessays 22:11231133.Google Scholar
Purvis, A., Cardillo, M., Grenyer, R., and Collen, B. 2005. Correlates of extinction risk: phylogeny, biology, threat and scale. Pp. 295316 in Purvis, A., Gittleman, J. L., and Brooks, T., eds. Phylogeny and conservation. Cambridge University Press, Cambridge.Google Scholar
Rabinowitz, D. 1981. Seven forms of rarity. Pp. 205–17 in Synge, J., ed. The biological aspects of rare plant conservation. Wiley, Chichester, U.K. Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Rice, S.H. 2004. Evolutionary theory. Sinauer, Sunderland, Mass.Google Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B. 1980. Quantitative-analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Signor, P. W. III, and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. In Silver, L. T. and Schultz, P. H., eds. Geological Society of America Special Paper 190:291296.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.Google Scholar
Thompson, W. L., ed. 2004. Sampling rare or elusive species. Island Press, Washington.Google Scholar
Tomašových, A., Fürsich, F. T., and Olszewski, T. D. 2006. Modeling shelliness and alteration in shell beds: variation in hardpart input and burial rates leads to opposing predictions. Paleobiology 32:278298.CrossRefGoogle Scholar
Tracy, C. R., and George, T. L. 1992. On the determinants of extinction. American Naturalist 139:102122.Google Scholar
Valentine, J. W., Jablonski, D., Kidwell, S., and Roy, K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. Proceedings of the National Academy of Sciences USA 103:65996604.Google Scholar
Van Valen, L. M. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Wang, S. C., and Bush, A. M. 2008. Adjusting global extinction rates to account for taxonomic susceptibility. Paleobiology 34:434455.CrossRefGoogle Scholar