Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T12:39:45.761Z Has data issue: false hasContentIssue false

Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction

Published online by Cambridge University Press:  08 April 2016

Walton A. Green
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012. E-mail: wagreen@bricol.net
Gene Hunt
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012. E-mail: wagreen@bricol.net
Scott L. Wing
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012. E-mail: wagreen@bricol.net
William A. DiMichele
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, MRC 121, Washington, D.C. 20013-7012. E-mail: wagreen@bricol.net

Abstract

Extinctions are caused by environmental and ecological change but are recognized and measured in the fossil record by the disappearance of clades or lineages. If the ecological preferences of lineages or taxa are weakly congruent with their phylogenetic relationships, even large ecological perturbations are unlikely to drive major clades extinct because the factors that eliminate some species are unlikely to affect close relatives with different ecological preferences. In contrast, if phylogenetic relatedness and ecological preferences are congruent, then ecological perturbations can more easily cause extinctions of large clades. In order to quantify this effect, we used a computer model to simulate the diversification and extinction of clades based on ecological criteria. By varying the parameters of the model, we explored (1) the relationship between the extinction probability for a clade of a given size (number of terminals) and the overall intensity of extinction (the proportion of the terminals that go extinct), and (2) the congruence between ecological traits of the terminals and their phylogenetic relationships. Data from two extinctions (planktonic foraminifera at the Eocene/Oligocene boundary and vascular land plants at the Middle/Late Pennsylvanian boundary) show phylogenetic clustering of both ecological traits and extinction probability and demonstrate the interaction of these factors. The disappearance of large clades is observed in the fossil record, but our model suggests that it is very improbable without both high overall extinction intensities and high congruence between ecology and phylogeny.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10951108.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. and McCall, P., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Bateman, R. M., DiMichele, W. A., and Willard, D. A. 1992. Experimental cladistic analysis of anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: an essay on paleobotanical phylogenetics. Annals of the Missouri Botanical Garden 79:500559.Google Scholar
Bielby, J., Cunningham, A. A., and Purvis, A. 2006. Taxonomic selectivity in amphibians: ignorance, geography or biology? Animal Conservation 9:135143.CrossRefGoogle Scholar
Blake, B. M. Jr, Cross, A. T., Eble, C. F., Gillespie, W. H., and Pfefferkorn, H. W. 1999. Selected plant megafossils from the Carboniferous of the Appalachian Region, Eastern United States: geographic and stratigraphic distribution. Pp. 259335 in Hillis, L. V. et al., eds. Carboniferous and Permian of the World. Canadian Society of Petroleum Geologists Memoir 19.Google Scholar
Blomberg, S. P., and Garland, T. Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology 15:899910.Google Scholar
Blomberg, S. P., Garland, T. Jr., and Ives, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.Google Scholar
Butchart, S. H. M, Stattersfield, A. J., Baillie, J., Bennun, L. A., Stuart, S. N., Akçakaya, H. R., Hilton-Taylor, C. and Mace, G. M. 2005. Using Red List Indices to measure progress towards the 2010 target and beyond. Philosophical Transactions of the Royal Society of London B 360:255268.Google Scholar
Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74:829836.CrossRefGoogle Scholar
Costanza, S. H. 1985. Pennsylvanioxylon of Middle and Upper Pennsylvanian coals from the Illinois Basin and its comparison with Mesoxylon . Palaeontographica, Abteilung B 197:81121.Google Scholar
Crisp, M. D., Arroyo, M. T., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., Weston, P. H., Westoby, M., Wilf, P., and Linder, H. P. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754756.Google Scholar
DeMaris, P. J. 2000. Formation and distribution of coal balls in the Herrin coal (Pennsylvanian), Franklin County, Illinois Basin, USA. Journal of the Geological Society, London 157:221228.Google Scholar
DiMichele, W. A., and Phillips, T. L. 1979. Stelastellara Baxter, axes of questionable gymnosperm affinity with unusual habit—Middle Pennsylvanian. Review of Palaeobotany and Palynology 27:103117.Google Scholar
DiMichele, W. A., and Phillips, T. L. 1996. Climate change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America. Pp. 201221 in Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102.Google Scholar
DiMichele, W. A., Stein, W. E., and Bateman, R. M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. Pp. 285335 in Allmon, W. and Bottjer, D. J., eds. Evolutionary paleoecology. Columbia University Press, New York.Google Scholar
DiMichele, W. A., Montañez, I. P., Poulsen, C. J., and Tabor, N. J. 2009. Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology 7:200226 CrossRefGoogle ScholarPubMed
Dimitrova, T. Kh., and Cleal, C. J. 2007. Palynological evidence for late Westphalian-early Stephanian vegetation change in the Dobrudzha Coalfield, NE Bulgaria. Geological Magazine 144:513524.Google Scholar
Dimitrova, T. Kh., Cleal, C. J., and Thomas, B. A. 2005. Palynology of late Westphalian-early Stephanian coal-bearing deposits in the eastern South Wales Coalfield. Geological Magazine 142:809821.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic vs. the Mesozoic. Evolution 37:11771186.Google Scholar
Felsenstein, J. 2005. Using the quantitative genetic threshold model for inferences between and within species. Philosophical Transactions of the Royal Society of London B 360:14271434.Google Scholar
Finnegan, S., Payne, J. L., and Wang, S. C. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.Google Scholar
Foote, M. 1991. Analysis of morphological data. Pp. 5986 in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Paleontological Society, Lawrence, Kans. Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):74102.CrossRefGoogle Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712726.CrossRefGoogle Scholar
Galtier, J., and Phillips, T. L. 1996. Structure and evolutionary significance of Palaeozoic ferns. Pp. 417483 in Camus, J. M., Gibby, M., and Johns, R. J., eds. Pteridology in perspective. Royal Botanical Gardens, Kew, London. Google Scholar
Green, W. A., and Hickey, L. J. 2005. Leaf architectural profiles of angiosperm floras across the Cretaceous/Tertiary boundary. American Journal of Science 305:9831013.Google Scholar
Grime, J. P. 2002. Plant strategies, vegetation processes, and ecosystem properties, 2d ed. Wiley, New York.Google Scholar
Harmon, L., Weir, J., Brock, C., Glor, R., Challenger, W. and Hunt, G. 2008. geiger: analysis of evolutionary diversification. R package version 1.2–13. http://www.webpages.uidaho.edu/∼lukeh/index.html Google Scholar
Hutchinson, G. E. 1978. An introduction to population ecology. Yale University Press, New Haven, Conn. Google Scholar
Jablonski, D. 1986. Background and mass extinctions—the alternation of macroevolutionary regimes. Science 231:129133.Google Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.Google Scholar
Jablonski, D. 2001. Lessons from the past: evolutionary impacts of mass extinctions. Proceedings of the National Academy of Sciences USA 98:53935398.Google Scholar
Jablonski, D. 2004. The evolutionary role of mass extinctions: disaster, recovery and something in-between. Pp. 151177 in Taylor, P. D., ed. Extinctions in the history of life. Cambridge University Press, Cambridge.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.CrossRefGoogle Scholar
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.Google Scholar
Janevski, G. A., and Baumiller, T. K. 2009. Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553564.Google Scholar
Kembel, S., Ackerly, D., Blomberg, S., Cowan, P., Helmus, M. and Webb, C. 2008. picante: tools for integrating phylogenies and ecology. R package version 0.4-0. http://cran.r-project.org/web/packages/picante/index.html Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2168 in Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Lesnikowska, A. D. 1989. Anatomically preserved Marattiales from coal swamps of the Desmoinesian and Missourian of the midcontinent United States: systematics, ecology, and evolution. Ph.D. dissertation. University of Illinois, Urbana-Champaign.Google Scholar
Lockwood, J. L., Russell, G. J., Gittleman, J. L., Daehler, C. C., McKinney, M. L., and Purvis, A. 2002. A metric for analyzing taxonomic patterns of extinction risk. Conservation Biology 16:11371142.Google Scholar
Looy, C., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A., and Visscher, H. 2001. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences USA 98:78797883.Google Scholar
McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M., and Surlyk, F. 2007. Macroecological responses of terrestrial vegetation to climate and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33:547573.Google Scholar
McElwain, J. C., Wagner, P. J., and Hesselbo, S. P. 2009. Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324:15541556.Google Scholar
McKinney, M. L. 1995. Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates. Paleobiology 21:300313.Google Scholar
Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., and Westoby, M. 2005. A brief history of seed size. Science 307:576580 Google Scholar
Nee, S., and May, R. M. 1997. Extinction and the loss of evolutionary history. Science 278:692694.Google Scholar
Niklas, K. J., and Tiffney, B. H. 1994. The quantification of plant biodiversity through time. Philosophical Transactions of the Royal Society of London B 345:3544.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants. Evolutionary Biology 12:189.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level. Pp. 97128 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Institution Press, Washington, D.C. Google Scholar
Owens, I. P. F., and Bennett, P. M. 2000. Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proceedings of the National Academy of Sciences USA 97:1214412148.Google Scholar
Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331348.Google Scholar
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877884.Google Scholar
Paradis, E., and Claude, J. 2002. Analysis of comparative data using generalized estimating equations. Journal of Theoretical Biology 218:175185.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A. 2006. Atlas of Eocene planktonic foraminifera. Cushman Foundation for Foraminiferal Research Special Publication No. 41.Google Scholar
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. Dunkley, Coxall, H. K., Bown, P. R., and Lear, C. H. 2008. Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology 36:179182.Google Scholar
Peppers, R. A. 1996. Palynological correlation of major Pennsylvanian (Middle and Upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins. Geological Society of America Memoirs 188.Google Scholar
Pfefferkorn, H. W., and Thomson, M. 1982. Changes in dominance patterns in Upper Carboniferous plant-fossil assemblages. Geology 10:641644.Google Scholar
Phillips, T. L. 1974. Evolution of vegetative morphology in coenopterid ferns. Annals of the Missouri Botanical Garden 61:427461.Google Scholar
Phillips, T. L., and Galtier, J. 2005. Evolutionary and ecological perspectives of Late Paleozoic ferns, Part I. Zygopteridales. Review of Palaeobotany and Palynology 135:165203.Google Scholar
Phillips, T. L., Peppers, R. A., Avcin, M. J., and Laughnan, P. F. 1974. Fossil plants and coal: patterns of change in Pennsylvanian coal swamps of the Illinois Basin. Science 184:13671369.CrossRefGoogle ScholarPubMed
Phillips, T. L., Kunz, A. B., and Mickish, D. J. 1977. Paleobotany of permineralized peat (coal balls) from the Herrin (no. 6) coal member of the Illinois basin. Geological Society of America Microform Publication 7:1849.Google Scholar
Pigg, K. B., Taylor, T. N., and Stockey, R. A. 1987. Paleozoic seed ferns: Heterangium kentuckyensis sp. nov., from the Upper Carboniferous of North America. American Journal of Botany 74:11841204.Google Scholar
Prinzing, A., Durka, W., Klotz, S., and Brandl, R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society of London B 268:23832389.Google Scholar
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Reviews of Ecology and Systematics 39:301319.Google Scholar
Purvis, A., Jones, K. E., and Mace, G. M. 2000. Extinction. BioEssays 22:11231133.Google Scholar
R Development Core Team. 2008. R: a language and environment for statistical computing, Version 2.7.0. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/ Google Scholar
Rabosky, D. L. 2009. Heritability of extinction rates links diversification patterns in molecular phylogenies and fossils. Systematic Biology 58:629640.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science 231:15281533.CrossRefGoogle ScholarPubMed
Raup, D. M. 1991. Extinction: bad genes or bad luck? Norton, New York.Google Scholar
Raup, D. M. 1993. Extinction. Oxford University Press, Oxford.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Rothwell, G.W. 1991. Botryopteris forensis, a trunk epiphyte of the tree fern Psaronius . American Journal of Botany 78:782788.CrossRefGoogle Scholar
Roy, K., Hunt, G., and Jablonski, D. 2009. Phylogenetic conservatism of extinctions in marine bivalves. Science 325:733737.Google Scholar
Russell, G. J., Brooks, T. M., McKinney, M. M., and Anderson, C. G. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12:13651376.Google Scholar
Schwartz, M. W., and Simberloff, D. 2001. Taxon size predicts rates of rarity in vascular plants. Ecology Letters 4:464469.Google Scholar
Seilacher, A. 1998. Patterns of macroevolution: how to be prepared for extinction. Comptes Rendus de l'Académie des Sciences, series II A, Sciences de la Terre et des Planètes 327:431440.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new paleontological data confirm evolutionary patterns. Paleobiology 19:4351.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.Google Scholar
Taylor, T. N. 1965. Paleozoic seed studies: a monograph of the American species of Pachytesta . Palaeontographica, Abteilung B 117:146.Google Scholar
Taylor, T. N. 1967. Paleozoic seed studies: on the structure of Conostoma leptospermum n. sp., and Albertlongia incostata n. gen. and sp. Palaeontographica, Abteilung B 121:2329.Google Scholar
Trivett, M. L. 1992. Growth architecture, structure, and relationships of Cordaixylon iowensis nov. comb. (Cordaitales). International Journal of Plant Sciences 153:273287.Google Scholar
Wade, B. S., and Pearson, P. N. 2008. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. Marine Micro-paleontology 68:244255.Google Scholar
Wang, S. C., and Bush, A. M. 2008. Adjusting global extinction rates to account for taxonomic susceptibility Paleobiology 34:434455.Google Scholar
Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199:213227.Google Scholar
Wilf, P., and Johnson, K. R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30:347368.Google Scholar
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., and Davis, C. C. 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the National Academy of Sciences USA 105:1702917033.Google Scholar
Wing, S. L. 2004. Do plants suffer mass extinctions. Pp. 6097 in Taylor, P. D., ed. Extinctions in the history of life. Cambridge University Press, Cambridge.Google Scholar
Supplementary material: File

Green et al. supplementary material

Supplementary Material

Download Green et al. supplementary material(File)
File 1 KB
Supplementary material: File

Green et al. supplementary material

Supplementary Material

Download Green et al. supplementary material(File)
File 1.4 MB