Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T15:20:16.852Z Has data issue: false hasContentIssue false

Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers

Published online by Cambridge University Press:  08 April 2016

Matthew A. Kosnik
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, NHB MRC 121, Washington, D.C. 20013-7012. E-mail: matthew.kosnik@mq.edu.au
John Alroy
Affiliation:
National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 735 State Street, Santa Barbara, California 93101. E-mail: john.alroy@mq.edu.au
Anna K. Behrensmeyer
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, NHB MRC 121, Washington, D.C. 20013-7012. E-mail: behrensa@si.edu
Franz T. Fürsich
Affiliation:
GeoZentrum Nordbayern der Universität Erlangen, Fachgruppe Paläoumwelt, Loewenichstrasse 28, D-91054 Erlangen, Germany. E-mail: franz.fuersich@gzn.uni-erlangen.de
Robert A. Gastaldo
Affiliation:
Department of Geology, Colby College, Waterville, Maine 04901. E-mail: ragastal@colby.edu
Susan M. Kidwell
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu
Michał Kowalewski
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061. E-mail: michalk@vt.edu
Roy E. Plotnick
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois 60607. E-mail: plotnick@uic.edu
Raymond R. Rogers
Affiliation:
Geology Department, Macalester College, St. Paul, Minnesota 55105. E-mail: rogers@macalester.edu
Peter J. Wagner
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, NHB MRC 121, Washington, D.C. 20013-7012. E-mail: wagnerpj@si.edu

Abstract

Phanerozoic trends in shell and life habit traits linked to postmortem durability were evaluated for the most common fossil brachiopod, gastropod, and bivalve genera in order to test for changes in taphonomic bias. Using the Paleobiology Database, we tabulated occurrence frequencies of genera for 48 intervals of ∼11 Myr duration. The most frequently occurring genera, cumulatively representing 40% of occurrences in each time bin, were scored for intrinsic durability on the basis of shell size, reinforcement (ribs, folds, and spines), life habit, and mineralogy.

Shell durability is positively correlated with the number of genera in a time bin, but durability traits exhibit different temporal patterns across higher taxa, with notable offsets in the timing of changes in these traits. We find no evidence for temporal decreases in durability that would indicate taphonomic bias at the Phanerozoic scale among commonly occurring genera. Also, all three groups show a remarkable stability in mean shell size through the Phanerozoic, an unlikely pattern if strong size-filtering taphonomic megabiases were affecting the fossil record of shelly faunas. Moreover, small shell sizes are attained in the early Paleozoic in brachiopods and in the latest Paleozoic in gastropods but are steady in bivalves; unreinforced shells are common to all groups across the entire Phanerozoic; organophosphatic and aragonitic shells dominate only the oldest and youngest time bins; and microstructures having high organic content are most common in the oldest time bins.

In most cases, the timing of changes in durability-related traits is inconsistent with a late Mesozoic Marine Revolution. The post-Paleozoic increase in mean gastropod reinforcement occurs in the early Triassic, suggesting either an earlier appearance and expansion of durophagous predators or other drivers. Increases in shell durability hypothesized to be the result of increased predation in the late Mesozoic are not evident in the common genera examined here. Infaunal life habit does increase in the late Mesozoic, but it does not become more common than levels already attained during the Paleozoic, and only among bivalves does the elevated late Mesozoic level persist through the Holocene.

These temporal patterns suggest control on the occurrence of durability-related traits by individual evolutionary histories rather than taphonomic megabiases. Our findings do not mean taphonomic biases are absent from the fossil record, but rather that their effects apparently have had little net effect on the relative occurrence of shell traits generally thought to confer higher preservation potential over long time scales.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1993a. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:6568.2.3.CO;2>CrossRefGoogle Scholar
Allison, P. A., and Briggs, D. E. G. 1993b. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21:527530.Google Scholar
Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science. 329:11911194. DOI: 10.1126/science.1189910 CrossRefGoogle ScholarPubMed
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.Google Scholar
Bandel, K. 1990. Shell structure of the Gastropoda excluding Archaeogastropoda. Pp. 117134 in Carter, J. G., ed. Skeletal biomineralization: patterns, processes and evolutionary trends, Vol. 1. Van Nostrand Reinhold, New York.Google Scholar
Batten, R. L. 1984. The Calcitic wall in the Paleozoic families Euomphalidae and Platyceratidae (Archeogastropoda). Journal of Paleontology 58:11861192.Google Scholar
Baumiller, T. K., Salamon, M. A., Gorzelak, P., Mooi, R., Messing, C. G., and Gahn, F. J. 2010. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences USA 107:58935896.Google Scholar
Behrensmeyer, A. K., and Kidwell, S. M. 1985. Taphonomy contributions to paleobiology. Paleobiology 11:105119.Google Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):103147.CrossRefGoogle Scholar
Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Alroy, J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology 31:607623.Google Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J. and Smith, A. S. 2010. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B 277:829834.Google Scholar
Best, M. M. R., and Kidwell, S. M. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings II. Effect of bivalve life habits and shell types. Paleobiology 26:103115.Google Scholar
Briggs, D. E. G. 1995. Experimental taphonomy. Palaios 10:539550.Google Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference. Springer, New York.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Carter, J. G. 1990. Skeletal biomineralization: patterns, processes, and evolutionary trends. Van Nostrand Reinhold, New York.Google Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.Google Scholar
Cherns, L., and Wright, V. P. 2009. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756771.Google Scholar
Cherns, L., Wheeley, J. R., and Wright, V. P. 2008. Taphonomic windows and molluscan preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 270:220229.Google Scholar
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A. 2006. Completeness of the fossil record: estimating losses due to body size. Geology 34:241244.Google Scholar
Cusack, M., and Williams, A. 1996. Chemico-structural degradation of carboniferous lingulid shells. Philosophical Transactions of the Royal Society of London B 351:3349.Google Scholar
Dickson, J. A. D. 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298:12221224.CrossRefGoogle ScholarPubMed
Droser, M. L., and Bottjer, D. L. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.Google Scholar
Efremov, I. A. 1940. Taphonomy: a new branch of paleobiology. Pan-American Geology 74:8193.Google Scholar
Elicki, O., and Gürsu, S. 2009. First record of Pojetaia runnegari Jell, 1980 and Fordilla Barrande, 1881 from the Middle East (Taurus Mountains, Turkey) and critical review of Cambrian bivalves. Paläontologische Zeitschrift 83:267291.Google Scholar
Erwin, D. H. 1990. Carboniferous–Triassic gastropod diversity patterns and the Permo-Triassic mass extinction. Paleobiology 16:187203.Google Scholar
Farkaš, J., Böhm, F., Wallmann, K., Blenkinsop, J., Eisenhauer, A., van Geldern, R., Munnecke, A., Voigt, S., and Veizer, J. 2007. Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochimica et Cosmochimica Acta 71:51175134.Google Scholar
Finnegan, S., McClain, C. M., Kosnik, M. A., and Payne, J. L. 2011. Escargot through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252269 (this volume).Google Scholar
Glover, C. P., and Kidwell, S. M. 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.Google Scholar
Goatley, C. H. R., Bellwood, D. R., and Bellwood, O. 2010. Fishes on coral reefs: changing roles over the past 240 million years. Paleobiology 36:415427.Google Scholar
Greenstein, B. J. 1991. An integrated study of echinoid taphonomy: predictions for the fossil record of four echinoid families. Palaios 6:519540.Google Scholar
Harper, E. M. 2000. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? Journal of Zoology 251:179186.Google Scholar
Harper, E. M., Palmer, T. J., and Alphey, J. R. 1997. Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geological Magazine 134:403407.CrossRefGoogle Scholar
Harper, E. M., Taylor, J. D., and Crame, J. A., eds. 2000. Evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177.Google Scholar
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:5162.Google Scholar
Hickman, C. S., and McLean, J. H. 1990. Systematic revision and suprageneric classification of trochacean gastropods. Natural History Museum of Los Angeles County Science Series No. 35.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Hunt, G. 2008a. Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360377.CrossRefGoogle Scholar
Hunt, G. 2008b. paleoTS: modeling evolution in paleontological time-series. R package version 0.3–1.Google Scholar
Huntley, J. W., and Kowalewski, M. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.CrossRefGoogle ScholarPubMed
Hurley, I. A., Mueller, R. L., Dunn, K. A., Schmidt, E. J., Friedman, M., Ho, R. K., Prince, V. E., Yang, Z., Thomas, M. G., and Coates, M. I. 2007. A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society of London B 274:489498.Google Scholar
Inoue, J. G., Miya, M., Venkatesh, B., and Nishida, M. 2005. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227235.Google Scholar
James, N. P., Bone, Y., and Kyser, T. K. 2005. Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, Southern Australia. Journal of Sedimentary Research 75:457467.CrossRefGoogle Scholar
Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in molluscs. Science 307:914917.Google Scholar
Kidwell, S. M., and Baumiller, T. 1990. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. Paleobiology 16:247271.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy. Plenum, New York.CrossRefGoogle Scholar
Kidwell, S. M., and Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction? Geology 22:11391143.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1996. Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. Pp. 290336 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: essays in honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
Kiessling, W., Aberhan, M., and Villier, L. 2008. Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience 1:527530.Google Scholar
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data collection efforts. Palaios 21:588597.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., and Wüst, R. A. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Kaufman, D. S., and Wüst, R. A. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 34:565586.CrossRefGoogle Scholar
Kowalewski, M., and Flessa, K. W. 1996. Improving with age: the fossil record of lingulide brachiopods and the nature of taphonomic megabiases. Geology 24:977980.Google Scholar
Kowalewski, M., Carroll, M., Casazza, L., Gupta, N., Hannisdal, B., Hendy, A., Krause, R. A. Jr., LaBarbera, M., Lazo, D. G., Messina, C., Puchalski, S., Rothfus, T. A., Sälgeback, J., Stempien, J., Terry, R. C., and Tomašových, A. 2003. Quantitative fidelity of brachiopod-mollusk assemblages from modern subtidal environments of San Juan Islands, United States of America. Journal of Taphonomy 1:4365.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Krause, R. A., Stempien, J. A., Kowalewski, M., and Miller, A. I. 2007. Body size estimates from the literature: utility and potential for macroevolutionary studies. Palaios 22:6073.Google Scholar
Kriwet, J., Kiessling, W., and Klug, S. 2009. Diversification trajectories and evolutionary life-history traits in early sharks and batoids. Proceedings of the Royal Society of London B 276:945951.Google Scholar
LaBarbera, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology 7:510526.Google Scholar
Lazo, D. G. 2004. Bivalve taphonomy: testing the effect of life habits on the shell condition of the littleneck clam Protothaca (Protothaca) staminea (Mollusca: Bivalvia). Palaios 19:451459.2.0.CO;2>CrossRefGoogle Scholar
Lindberg, D. R., and Ponder, W. F. 2001. The influence of classification on the evolutionary interpretation of structure—a re-evaluation of the evolution of the pallial cavity of gastropod molluscs. Organisms, Diversity and Evolution 1:273299.CrossRefGoogle Scholar
MacClintock, C. 1967. Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Museum of Natural History, Yale University, Bulletin 22.Google Scholar
Madin, J. S., Alroy, J., Aberhan, M., Fürsich, F. T., Kiessling, W., Kosnik, M. A., and Wagner, P. J. 2006. Evidence for evolutionary escalation at the Phanerozoic scale. Science 312:897900.Google Scholar
Maisch, M. W., and Matzke, A. T. 2000. The Ichthyosauria. Stuttgarter Beiträge zur Naturkunde B 298:1159.Google Scholar
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, Cambridge.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
McShea, D. W. 1994. Mechanisms of Large-Scale Evolutionary Trends. Evolution 48:17471763.Google Scholar
Miller, A. I. 2004. The Ordovician radiation: toward a new global synthesis. Pp. 380388 in Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G., eds. The great Ordovician biodiversification event. Columbia University Press, New York.Google Scholar
Miller, A. I., Aberhan, M., Buick, D. P., Bulinski, K.V., Ferguson, C. A., Hendy, A. J. W., and Kiessling, W. 2009. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35:612630.CrossRefGoogle Scholar
Motani, R. 1999. Phylogeny of the Icthyopterygia. Journal of Vertebrate Paleontology 19:473496.Google Scholar
Novack-Gottshall, P. M., and Lanier, M. A. 2008. Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences USA 105:54305434.Google Scholar
Oji, T., Ogaya, C., and Sato, T. 2003. Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology 29:520526.Google Scholar
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology 31:769772. Paleobiology Database. http://paleodb.org/ Google Scholar
Parsons, K. M., and Brett, C. E. 1991. Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblage preservation. Pp. 2265 in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Peters, S. E. 2005. Geological constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Plotnick, R. E., and Wagner, P. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Pojeta, J. Jr. 2000. Cambrian Pelecypoda (Mollusca). American Malacological Bulletin 15:157166.Google Scholar
Qian, Y., and Bengtson, S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata 24:1156.Google Scholar
R Development Core Team. 2009. R: a language and environment for statistical computing, Version 2.10.0. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Rivadeneira, M. M. 2010. On the completeness and fidelity of the Quaternary bivalve record from the temperate coast of South America. Palaios 25:4045.Google Scholar
Sanders, D. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance. Journal of African Earth Sciences 36:99134.CrossRefGoogle Scholar
Schneider, J. A., and Carter, J. G. 2001. Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca, Bivalvia). Journal of Paleontology 75:607643.2.0.CO;2>CrossRefGoogle Scholar
Schubert, J. K., Kidder, D. L., and Erwin, D. H. 1997. Silica-replaced fossils through the Phanerozoic. Geology 25:10351038.Google Scholar
Schweitzer, C. E., and Feldmann, R. M. 2010. The Decapoda (Crustacea) as predators on Mollusca through geologic time. Palaios 25:167182.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological pattern. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint. Pp. 298312 in Einsele, G., Rickert, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250 in Hallam, A., ed. Patterns of evolution as illustrated by the fossil record. Elsevier, New York.CrossRefGoogle Scholar
Stanley, S. M. 2006. Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 232:214236.CrossRefGoogle Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:319.Google Scholar
Taylor, P. D., and Allison, P. A. 1998. Bryozoan carbonates through time and space. Geology 26:459462.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. Bulletin of the British Museum (Natural History), Zoology 3(Suppl.):1125.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea. Conclusions. Bulletin of the British Museum (Natural History), Zoology 22(Suppl.):253294.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625 in Tevesz, M. and McCall, P., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Tomašových, A. 2004. Postmortem durability and population dynamics affecting the fidelity of brachiopod size-frequency distributions. Palaios 19:477496.Google Scholar
Tomašových, A., and Rothfus, T. A. 2005. Differential taphonomy of modern brachiopods (San Juan Islands, Washington State): effect of intrinsic factors on damage and community-level abundance. Lethaia 38:271292.CrossRefGoogle Scholar
Tomašových, A., and Zuschin, M. 2009. Variation in brachiopod preservation along a carbonate shelf-basin transect (Red Sea and Gulf of Aden): environmental sensitivity of taphofacies. Palaios 24:697716.Google Scholar
Underwood, C. J. 2006. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology 32:215235.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:8394.CrossRefGoogle Scholar
Valentine, J. W., Jablonski, D., Kidwell, S., and Roy, K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. Proceedings of the National Academy of Sciences USA 103:65996604.Google Scholar
Venables, W. N., and Ripley, B. D. 2002. Modern applied statistics with S, 4th ed. Springer, Berlin.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 2002. Characters in context: molluscan shells and the forces that mold them. Paleobiology 28:4154.Google Scholar
Vermeij, G. J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263:38.Google Scholar
Wagner, P. J. 1999. Phylogenetic relationships of the earliest anistrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Williams, A., Carlson, S. J., and Brunton, C. H. C. 2000. Brachiopod classification. Pp. 127 in Williams, W. et al. Brachiopoda (revised), Vols. 2, 3. Part H of Kaesler, R. L. and Moore, R. C., eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas Press, Lawrence.Google Scholar
Wright, P., Cherns, L., and Hodges, P. 2003. Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.Google Scholar
Xu, G., and Grant, R. E. 1994. Brachiopods near the Permian-Triassic boundary in South China. Smithsonian Contributions to Paleobiology 76:168.Google Scholar
Yochelson, E. L. 1981. Fordilla troyensis Barrande: the oldest known “pelecypod” may not be a pelecypod. Journal of Paleontology 55:113125.Google Scholar
Zuschin, M., Stachowitsch, M., and Stanton, R. J. 2003. Patterns and processes of shell fragmentation in modem and ancient marine environments. Earth-Science Reviews 63:3382.Google Scholar
Supplementary material: PDF

Kosnik et al. supplementary material

Supplementary Material

Download Kosnik et al. supplementary material(PDF)
PDF 481.2 KB