Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T04:30:02.135Z Has data issue: false hasContentIssue false

The quantized geometry of visual space: The coherent computation of depth, form, and lightness

Published online by Cambridge University Press:  04 February 2010

Stephen Grossberg
Affiliation:
Center for Adaptive Systems, Department of Mathematics, Boston University, Boston, Mass. 02215

Abstract

A theory is presented of how global visual interactions between depth, length, lightness, and form percepts can occur. The theory suggests how quantized activity patterns which reflect these visual properties can coherently fill-in, or complete, visually ambiguous regions starting with visually informative data features. Phenomena such as the Cornsweet and Craik–O'Brien effects, phantoms and subjective contours, binocular brightness summation, the equidistance tendency, Emmert's law, allelotropia, multiple spatial frequency scaling and edge detection, figure-ground completion, coexistence of depth and binocular rivalry, reflectance rivalry, Fechner's paradox, decrease of threshold contrast with increased number of cycles in a grating pattern, hysteresis, adaptation level tuning, Weber law modulation, shift of sensitivity with background luminance, and the finite capacity of visual short term memory are discussed in terms of a small set of concepts and mechanisms. Limitations of alternative visual theories which depend upon Fourier analysis, Laplacians, zero-crossings, and cooperative depth planes are described. Relationships between monocular and binocular processing of the same visual patterns are noted, and a shift in emphasis from edge and disparity computations toward the characterization of resonant activity-scaling correlations across multiple spatial scales is recommended. This recommendation follows from the theory's distinction between the concept of a structural spatial scale, which is determined by local receptive field properties, and a functional spatial scale, which is defined by the interaction between global properties of a visual scene and the network as a whole. Functional spatial scales, but not structural spatial scales, embody the quantization of network activity that reflects a scene's global visual representation. A functional scale is generated by a filling-in resonant exchange, or FIRE, which can be ignited by an exchange of feedback signals among the binocular cells where monocular patterns are binocularly matched.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amari, S. (1977) Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics 27: 7787. [DSL]CrossRefGoogle ScholarPubMed
Amari, S. (1982) Competitive and cooperative aspects in dynamics of neural excitation and self-organization. In: Competition and cooperation in neural nets (Lecture Notes in Biomnathematics, No. 45), ed. Amari, S. & Arbib, M. A., pp. 128. Berlin: Springer Verlag. [GJD, rSG]Google Scholar
Amari, S. I. & Arbib, M. A. (1977) Competition and cooperation in neural nets. In: Systems neuroscience, ed. Metzler, J.. New York: Academic Press. [taSG]Google Scholar
Arend, L. E. (1973) Spatial differential and integral operations in human vision: Implications of stabilized retinal image fading. Psychological Review, 80:374–95. [LEA]Google Scholar
Arend, L. E., Buehler, J. N. & Lockhead, G. R. (1971) Difference information in brightness perception. Perception and Psychophysics 9: 367–70. [LEA]Google Scholar
Arend, L. E. Jr, Lange, R. V. & Sandick, B. L. (1981) Nonlocal determination of brightness in spatially periodic patterns. Perception and Psychophysics 29: 310–16. [taSG]Google Scholar
Attneave, F. (1954) Some informational aspects of visual perception. Psychological Review 61:183–93. [DHF, taSG]CrossRefGoogle ScholarPubMed
Barlow, H. B. (1972) Optic nerve impulses and Weber's Law. In: Sensory coding, ed. Uttal, W. R.. Boston: Little, Browm. [rSG]Google Scholar
Barlow, H. B. & Levick, W. R. (1965) The mechanism of directionally selective units in rabbit's retina. Journal of Physiology 178: 447504. [rSG]CrossRefGoogle ScholarPubMed
Baylor, D. A. & Hodgkin, A. L. (1974) Changes in time scale and sensitivity in turtle photoreceptors. Journal of Physiology 242:729–58. [taSG]Google Scholar
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974a) The electrical response of turtle cones to flashes and steps of light. Journal of Physiology 242: 685727. [taSG]Google Scholar
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974b) Reconstruction of the electrical responses of turtle cones to flashes and steps of light. Journal of Physiology 242: 759–91. [taSG]CrossRefGoogle ScholarPubMed
Beck, J. (1972) Surface color perception. Ithaca, N.Y.: Cornell University Press. [taSG]Google Scholar
Bergström, S. S. (1966) A paradox in the perception of luminance gradients, I. Scandinavian Journal of Psychology 7: 209224. [rSG]Google Scholar
Bergström, S. S. (1967a) A paradox in the perception of luminance gradients, II. Scandinavian Journal of Psychology 8: 2532. [rSG]CrossRefGoogle ScholarPubMed
Bergström, S. S. (1967b) A paradox in the perception of luminance gradients, III. Scandinavian Journal of Psychology 8: 3337. [rSG]Google Scholar
Bergström, S. S. (1973) A note on the neural unit model for contrast phenomena. Vision Research 13: 20872092. [rSG]CrossRefGoogle ScholarPubMed
Blake, R. & Fox, R. (1973) The psychophysical inquiry into binocular summation. Perception and Psychophysics 14: 161–85. [HB]CrossRefGoogle Scholar
Blake, R., Sloane, M. & Fox, R. (1981) Further developments in binocular summation. Perception and Psychophysics 30: 266–76. [taSG]CrossRefGoogle ScholarPubMed
Blakemore, C., Carpenter, R. H. & Georgeson, M. A. (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228:3739. [taSG]Google Scholar
Blank, A. A. (1978) Metric geometry in human binocular perception: Theory and fact: In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [taSG, MW]Google Scholar
Boynton, R. M. (1968) The psychophysics of vision. In: Contemporary theory and research in visual perception, ed. Haber, R. N.. New York: Holt, Rinehart, and Winston. [rSG]Google Scholar
Bridgeman, B. (1971) Metacontrast and lateral inhibition. Psychological Review 78: 528–39. [BB]Google Scholar
Bridgeman, B. (1977) A correlational model applied to metacontrast: Reply to Weisstein, Ozog, and Szoc. Bulletin of the Psychonomic Society 10: 8588. [BB]Google Scholar
Bridgeman, B. (1978) Distributed sensory coding applied to simulations of iconic storage and metacontrast. Bulletin of Mathematical Biology 40: 605623. [BB]Google Scholar
Buffart, H. (1978) Brightness and contrast. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [HB]Google Scholar
Buffart, H. (1981) A theory of cyclopean perception. Nijmegen: University. [HB]Google Scholar
Buffart, H. (1982) Brightness estimation: A transducer function. In: Psychophysical judgment and the process of perception, eds. Geissler, H.-G., Buffart, H. F. J. M., Petzoldt, P. & Zabrodin, Y. M.. Amsterdam: North-Holland Publishing Co. [HB]Google Scholar
Buffart, H., Leeuwenberg, E. & Restle, F. (1981) Coding theory of visual pattern completion. Journal of Experimental Psychology 7: 241–74. [HB]Google Scholar
Caelli, T. M. (1982) Visual perception: Theory and practice. Oxford: Pergamon Press. [TC]Google Scholar
Caelli, T., Hoffman, W. C. & Lindman, H. (1978) Apparent motion: Self-excited oscillation induced by retarded neuronal flows. In: Formal theories of visual perception, ed. Leeuwenberg, E. L. J. & Buffart, H. F. J. M., New York: Wiley. [taSG]Google Scholar
Carpenter, C. A. & Grossberg, S. (1981) Adaptation and transmitter gating in vertebrate photoreceptors. Journal of Theoretical Neurobiology 1: 142. [tarSG]Google Scholar
Carpenter, C. A. & Grossberg, S. (1983) Dynamic models of neural systems: Propagated signals, photoreceptor transduction, and circadian rhythms. In: Oscillations in mathematical biology, ed. Hodgson, J. P. E.. New York: Springer-Verlag. [rSG]Google Scholar
Cogan, A. L., Silverman, C. & Sekuler, R. (1982) Binocular summation in detection of contrast flashes. Perception and Psychophysics 31: 330–38. [taSG]CrossRefGoogle ScholarPubMed
Cohen, M. A. & Grossberg, S. (1983a) Some global properties of binocular resonances: Disparity scaling, filling-in, and figure-ground synthesis. In: Figural synthesis, eds. Caelli, T. & Dodwell, P.. Hillsdale, N.J.: Erlbaum. [tarSG]Google Scholar
Cohen, M. A. & Grossberg, S. (1983b) The dynamics of brightness perception. In preparation. [rSG]Google Scholar
Cohen, M. A. & Grossberg, S. (1983c) Absolute stability of global pattern fbrmation and parallel memory storage in competitive neural networks. Transactions IEEE, in press. [rSG]Google Scholar
Coren, S. (1969) Brightness contrast as a function of figure-ground relations. Journal of Experimental Psychology 80: 517–24. [SC]CrossRefGoogle ScholarPubMed
Coren, S. (1972) Subjective contours and apparent depth. Psychological Review 79: 359–67. [taSG]CrossRefGoogle ScholarPubMed
Coren, S., Porac, C. & Ward, L. M. (1979) Sensation and perception. New York: Academic Press. [SG]Google Scholar
Cornsweet, T. N. (1970) Visual perception. New York: Academic Press. [HB, SC, taSG]Google Scholar
Crick, F. H. C., Marr, D. & Poggio, T. (1980) An information processing approach to understanding the visual cortex. In: The Cerebral Cortex, Neurosciences Research Program. [WELG]Google Scholar
Curtis, D. W. & Rule, S. J. (1978) Binocular processing of brightness information: A vector-sum model. Journal of Experimental Psychology: Human Perception and Performance 4: 132–43. [HB]Google ScholarPubMed
Dalenoort, G. J. (1982a) In search of the conditions for the genesis of cell assemblies: A study in self-organization. Journal of Social and Biological Structures 5: 161–87. [GJD]Google Scholar
Dalenoort, G. J. (1982b) Modelling cognitive processes in self-organizing neural networks, an exercise in scientific reduction. In: Biomathematics in 1980, eds. Ricciardi, L. M. & Scott, A. C., Amsterdam: North-Holland, pp. 133–44. [CJD]Google Scholar
Day, R. H. (1972) Visual spatial illusions: A general explanation. Science 175:1335–40. [taSG]Google Scholar
de, Lange H. (1957) Attenuation characteristics and phase-shift characteristics of the human fovea-cortex systems in relation to flicker-fusion phenomena. Delft: Technical University. [HB]Google Scholar
Deregowski, J. B. (1973) Illusion and culture. In: Illusions in nature and art, eds. Gregory, R. L. & Gombrich, C. H., pp. 161192. New York: Scribner's. [SEP]Google Scholar
Dev, P. (1975) Perception of depth surfaces in random-dot stereograms: A neural model. International Journal of Man-Machine Studies 7: 511–28. [tarSG]Google Scholar
de, Weert Ch. M. M. & Levelt, W. J. M. (1974) Binocular brightness combinations: Additive and nonadditive aspects. Perception and Psychophysics 15: 551–62. [HB]Google Scholar
Diner, D. (1978) Hysteresis in human binocular fusion: A second look. Ph.D. thesis California Institute of Technology, Pasadena. [BJ]Google Scholar
Dodwell, P. C. (1975) Pattern and object perception. In: Handbook of Perception, Vol. 5: Seeing. eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Eijkman, E. C. J., Jongsma, H. J. & Vincent, J. (1981) Two-dimensional filtering, oriented line detectors, and figural aspects as determinants of visual illusions. Perception and Psychophysics 29: 352–58. [taSG]Google Scholar
Ellias, S. A. & Grossberg, S. (1975) Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Biological Cybernetics 20: 6998. [tarSG, DSL]Google Scholar
Emmert, E. (1881) Grössenverhaltnisse der Nachbilder. Klinische Monatsblatt der Augenheilk unde 19: 443–50. [taSG]Google Scholar
Engel, G. R. (1967) The visual processes underlying binocular brightness summation. Vision Research 7: 753–67. [HB]Google Scholar
Engel, G. R. (1969) The autocorrelation function and binocular brightness mixing. Vision Research 9: 1111–30. [HB]CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187: 517–52. [taSG]Google Scholar
Fender, D. & Julesz, B. (1967) Extension of Panum's fusional area in binocularly stabilized vision. Journal of the Optical Society of America 57: 819–30. [HB, taSG, BJ]Google Scholar
Festinger, L., Coren, S. & Rivers, C. (1970) The effect of attention on brightness contrast and assimilation. American Journal of Psychology 83: 189207. [SC]Google Scholar
Foley, J. M. (1968) Depth, size and distance in stereoscopic vision. Perception and Psychophysics 3: 265–74. [JMF]Google Scholar
Foley, J. M. (1976) Binocular depth mixture. Vision Research 16: 1263–67. [JMF]Google Scholar
Foley, J. M. (1980) Binocular distance perception. Psychological Review 87: 411–34. [JMF, taSG]Google Scholar
Foster, D. H. (1978) Visual apparent motion and the calculus of variations. In: Formal Theories of Visual Perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M., pp. 6782. New York: Wiley. [DHF]Google Scholar
Foster, D. H. (1980) A spatial perturbation technique for the investigation of discrete internal representations of visual patterns. Biological Cyberbetics 38: 159–69. [DHF]Google Scholar
Fox, R. & McIntyre, C. (1967) Suppression during binocular fusion of complex targets. Psychonomic Science 8: 143–44. [HB]Google Scholar
Freeman, W. J. (1973) Cinematic display of spatial structure of EEC and averaged evoked potentials (AEPs) of olfactory bulb and cortex. Electroencephal. Clin. Neurophysiol. 37: 199. [WJF]Google Scholar
Freeman, W. J. (1975) Mass action in the nervous system. New York: Academic Press. [WJF]Google Scholar
Freeman, W. J. (1979a) EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biological Cybernetics 35: 221–34. [WJF]Google Scholar
Freeman, W. J. (1979b) Nonlinear dynamics of paleocortex manifested in the olfactory EEC. Biological Cybernetics 35:2137. [WJF, rSG]Google Scholar
Freeman, W. J. (1979c) Nonlinear gain mediating cortical stimulus response relations. Biological Cybernetics 33: 237–47. [WJF]Google Scholar
Freeman, W. J. (1981) A physiological hypothesis of perception. Perspectives in Biology and Medicine 24: 561–92. [WJF]Google Scholar
Freeman, W. J. & Schneider, W. (1982) Changes in spatial patterns of rabbit olfactory EEC with conditioning to odors.Psychophysiology 19: 4456. [WJF]Google Scholar
Frisby, J. P. (1979) Seeing. Oxford: Oxford University Press. [WELG]Google Scholar
Frisby, J. P. & Julesz, B. (1975) Depth reduction effects in random line stereograms. Perception 4: 151–58. [BJ]Google Scholar
Gerrits, H. J. M., de, Haan B. & Vendrick, A. J. H. (1966) Experiments with retinal stabilized images: Relations between the observations and neural data. Vision Research 6: 427–40. [rSG]Google Scholar
Gerrits, H. J. M. & Timmerman, J. C. M. E. N. (1969) The filling-in process in patients with retinal scotomata. Vision Research 9: 439–42. [rSG]Google Scholar
Gerrits, H. J. M. & Vendrik, A. J. H. (1970a) Artificial movements of a stabilized image. Vision Research 10: 1443–56. [HB]Google Scholar
Gerrits, H. J. M. & Vendrik, A. J. H. (1970b) Simultaneous contrast, filling-in process and information processing in man's visual system. Experimental Brain Research 11: 411–30. [HB, rSG]Google Scholar
Gerrits, H. J. M. & Vendrik, A. J. H. (1972) Eye movements necessary fur continuous perception during stabilization of retinal images. Bibliotheca Ophthalmalogica 82: 339–47. [HB]Google Scholar
Gerrits, H. J. M. & Vendrik, A. J. H. (1974) The influence of stimulus movements on perception in parafoveal stabilized vision. Vision Research 14: 175–80. [HB]Google Scholar
Gibson, J. J. (1950) Perception of the visual world. Boston: Houghton Mifflin. [taSG]Google Scholar
Gilchrist, A. L. (1977) Perceived lightness depends on perceived spatial arrangement. Science 195: 185–87. [SEP]Google Scholar
Gilchrist, A. L. (1979) The perception of surface blacks and whites. Scientific American 240: 112–24. [taSG, SEP]Google Scholar
Glass, L. (1970) Effect of blurring on perception of a simple geometric pattern. Nature 228: 1341–42. [WELG]CrossRefGoogle ScholarPubMed
Glass, L. & Switkes, E. (1976) Pattern recognition in humans: Correlations which cannot be perceived. Perception 5: 6772. [taSG]Google Scholar
Gogel, W. C. (1956) The tendency to see objects as equidistant and its reverse relations to lateral separation. Psychological Monograph 70 (whole no. 411). [taSC, DSL]Google Scholar
Gogel, W. C. (1965) Equidistance tendency and its consequences. Psychological Bulletin 64: 153–63. [taSG. DSL]Google Scholar
Gogel, W. C. (1970) The adjacency principle and three-dimensional visual illusions. Psychonomic Monograph Supplement 3 (whole no. 45), pp. 153169. [taSG. DSL]Google Scholar
Gonzales-Estrada, M. T. & Freeman, W. J. (1980) Effects of carnosine on olfactory bulb EEG, evoked potentials and DC potentials. Brain Research 202: 373–86. [WJF]CrossRefGoogle Scholar
Graham, N. (1981) The visual system does a crude Fourier analysis of patterns. In: Mathematical psychology and psychophysiology, ed. Grossberg, S.. Providence, R.I.: American Mathematical Society. [taSG]Google Scholar
Graham, N. & Nachmias, J. (1971) Detection of grating patterns containing two spatial frequencies: A test of single-channel and multiple channel models. Vision Research 11: 251–59. [taSG]Google Scholar
Graham, N., Robson, J. G. & Nachmias, J. (1978) Grating summation in fovea and periphery. Vision Research 18: 816–25. [taSG]Google Scholar
Gregory, R. L. (1966) Eye and brain. New York: McGraw-Hill. [taSG]Google Scholar
Grimson, W. E. L. (1981) A computer implementation of a theory of human stereo vision. Philosophical Transactions of the Royal Society of London B 292: 217–53. [WELG]Google Scholar
Grimson, W. E. L. (1982a) A computational theory of visual surface interpolation. Philosophical Transactions of the Royal Society of London B 298: 395427. [WELG. rSG]Google Scholar
Grimson, W. E. L. (1982b) From images to surfaces: a computational study of the human early visual system. Cambridge, Mass.: MIT Press. [rSG, WELG, KAS]Google Scholar
Grimson, W. E. L. (1983) Surface consistency contraints in vision. In: Computer Graphics and Image Processing (in press). [WELG]Google Scholar
Grossberg, S. (1968) Some physiological and biochemical consequences of psychological postulates. Proceedings of the National Academy of Sciences 60: 758–65. [taSG]Google Scholar
Grossberg, S. (1969a) On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks. journal of Statistical Physics 1: 319–50. [rSG]Google Scholar
Grossberg, S. (1969b) On the serial learning of lists. Mathematical Biosciences 4: 201–53. [rSG]Google Scholar
Grossberg, S. (1970a) Neural pattern discrimination. Journal of Theoretical Biology 27: 291337. [tarSG]Google Scholar
Grossberg, S. (1970b) Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, II. Studies in Applied Mathematics 49: 135–66. [rSG]Google Scholar
Grossberg, S. (1971a) On the dynamics of operant conditioning. Journal of Theoretical Biology 33: 225–55. [rSG]Google Scholar
Grossberg, S. (1971b) Pavlovian pattern learning by nonlinear neural networks. Proceedings of the National Academy of Sciences 68: 828–31. [rSG]Google Scholar
Grossberg, S. (1972a) A neural theory of punishment and avoidance, I. Qualitative theory. Mathematical Biosciences 15: 3967. [rSG]Google Scholar
Grossberg, S. (1972b) A neural theory of punishment and avoidance, II. Quantitative theory. Mathematical Biosciences 15: 253–85. [rSG]Google Scholar
Grossberg, S. (1972c) Pattern learning by functional-differential neural networks with arbitrary path weights. In: Delay and functional-differential equations and their applications, ed. Schmitt, K., New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1972d) Neural expectation: Cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classes. Kybernetik 10: 4957. [tarSG]Google Scholar
Grossberg, S. (1973) Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics 52: 217–57. [tarSG, DSL]Google Scholar
Grossberg, S. (1974) Classical and instrumental learning by neural networks. In: Progress in theoretical biology, Vol. 3, eds. Rosen, R. & Snell, F.. New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1975) A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology 18: 263327. [rSG]Google Scholar
Grossberg, S. (1976a) Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors. Biological Cybernetics 23: 121–34. [rSG, DSL]Google Scholar
Grossberg, S. (1976b) Adaptive pattern classification and universal recoding, II: Feedback expectation, olfaction, and illusions. Biological Cybernetics 23: 187202. [tarSG]CrossRefGoogle ScholarPubMed
Grossberg, S. (1978c) On the development of feature detectors in the visual cortex with applications to learning and reaction-diffusion systems. Biological Cybernetics 21: 145–59. [DSL]Google Scholar
Grossberg, S. (1978a) Behavioral contrast in short-term memory: Serial binary memory models or parallel continuous memory models? Journal of Mathematical Psychology 17: 199219. [taSG]Google Scholar
Grossberg, S. (1978b) Communication, memory, and development. In: Progress in theoretical biology, Vol. 5, eds. Rosen, R. & Snell, F., New York: Academic Press. [taSG]Google Scholar
Grossberg, S. (1978c) Competition, decision, and consensus. Journal of Mathematical Analysis and Applications 66: 470–93. [tarSG]Google Scholar
Grossberg, S. (1978d) Decisions, patterns, and oscillations in the dynamics of competitive systems with applications to Volterra-Lotka systems. Journal of Theoretical Biology pp. 101–30. [taSG]CrossRefGoogle Scholar
Grossberg, S. (1978e) A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In: Progress in theoretical biology, Vol. 5, eds. Rosen, R. & Snell, F.. New York: Academic Press. [tarSG]Google Scholar
Grossberg, S. (1980a) Biological competition: Decision rules, pattern formation, and oscillations. Proceedings of the National Academy of Sciences 77: 2338–42. [tarSG]Google Scholar
Grossberg, S. (1980b) How does a brain build a cognitive code? Psychological Review 87: 151. [HB, tarSG]Google Scholar
Grossberg, S. (1981) Adaptive resonance in development, perception, and cognition. In: Mathematical Psychology and Psychophysiology, ed Grossberg, S.. Providence, R. I.: American Mathematical Society. [tarSG]Google Scholar
Grossberg, S. (1982a) Associative and competitive principles of learning and development: The temporal unfolding and stability of STM and LTM patterns. In: Competition and cooperation in neural networks. eds. Amari, S. I. & Arbib, M.. New York: Springer-Verlag. [rSG]Google Scholar
Grossberg, S. (1982b) A psychophysiological theory of reinforcement, drive, motivation, and habit. Journal of Theoretical Neurobiology 1: 286369. [rSG]Google Scholar
Grossberg, S. (1982c) The processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychological Review 89: 529–72. [tarSG]Google Scholar
Grossberg, S. (1982d) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Cognition and brain activity, eds. Cohen, J., Karrer, R. & Tueting, P.. New York: New York Academy of Sciences. [tarSG]Google Scholar
Grossberg, S. (1982e) Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Boston: Reidel Press. [tarSG]Google Scholar
Grossberg, S. (1983a) The adaptive self-organization of serial order in behavior: Speech and motor control. In: Perception of speech and visual form: Theoretical issues, models, and research, eds. Schwab, E. C. & Nusbaum, H. C., New York: Academic Press. [rSG]Google Scholar
Grossberg, S. (1983b) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Brain and information: Evoked potential correlates, eds. Karrer, R., Cohen, J. & Tueting, P.. New York: New York Academy of Sciences.Google Scholar
Grossberg, S. & Kuperstein, M. (1983) Adaptive dynamics of the saccadic eye movement system. In preparation. [rSG]Google Scholar
Grossberg, S. & Levine, D. S. (1975) Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks. Journal of Theoretical Biology 53: 341–80. [tarSG, DSL]Google Scholar
Grossberg, S. & Pepe, J. (1970) Schizophrenia: Possible dependence of associational span, bowing, and primacy vs. recency on spiking threshold. Behavioral Science 15: 359–62. [rSG]Google Scholar
Grossberg, S. & Pepe, J. (1971) Spiking threshold and overarousal effects in serial learning. Journal of Statistical Physics 3: 95125. [rSG]Google Scholar
Grünau, M. W. von (1979) The involvement of illusory contours in stroboscopic motion. Perception and Psychophysics 25: 205–08. [taSG]Google Scholar
Hagen, M. A. & Teghtsoonian, M. (1981) The effects of binocular and motion- generated infarmation on the perception of depth and height. Perception and Psychophysics 30: 257–65. [taSG]Google Scholar
Hamada, J. (1976) A mathematical model for brightness and contour perception. Hokkaido Report of Psychology HRP-11–76∓17. [taSG]Google Scholar
Hamada, J. (1980) Antagonistic and non-antagonistic processes in the lightness perception. Proceedings of XXII International Congress of Psychology, Leipzig, 07 6–12. [tarSG]Google Scholar
Hebb, D. O. (1949) The organization of behavior. New York: Wiley. [GJD]Google Scholar
Hecht, S. (1934) Vision. II. The nature of the photoreceptor process. In: A handbook of general experimental psychology, ed. Murchison, C.. Worcester, Mass.: Clark University Press. [TI]Google Scholar
Helmholtz, H. L. F. von (1962) Treatise on physiological optics. Southall, J. P. C., trans. New York: Dover. [taSG]Google Scholar
Hepler, N. (1968) Color: A motion-contingent after-effect. Science 162: 376–77. [rSG]CrossRefGoogle Scholar
Hering, E. (1964) Outlines ofa theory of the light sense. Cambridge, Mass.: Harvard University Press. [taSG]Google Scholar
Hermann, A. (1971) The genesis of quantum theory (1899–1913). Nash, C. V., trans. Cambridge, Mass.: MIT Press. [rSG]Google Scholar
Hildreth, E. C. (1980) Implementation of a theory of edge detection. MIT Artificial Intelligence Laboratory Technical Report TR-579. [WELG]Google Scholar
Hochberg, J. (1964) Contralateral suppressive fields of binocular combination. Psychonoinic Science 1: 157–58. [HB]Google Scholar
Hochberg, J. & Beck, J. (1954) Apparent spatial arrangement and perceived brightness. American Journal of Psychology 47: 263–66. [SEP]Google ScholarPubMed
Holway, A. F. & Boring, E. C. (1941) Determinants of apparent visual size with distance variant. American Journal of Psychology 54: 2137. [taSG]Google Scholar
Horn, B. K. P. (1974) Determining lightness from an image. Computer Graphics and Image Processing 3: 277–99. [rSG, WELG]Google Scholar
Horn, B. K. P. (1977) Understanding image intensities. Artificial Intelligence 8: 201–31. [WELG]Google Scholar
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London (B) 198: 159. [taSG]Google ScholarPubMed
Hurvich, L. M. & Jameson, D. (1955) Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. Journal of the Optical Society of America 45: 602–16. [rSG]CrossRefGoogle ScholarPubMed
Indow, T. (1979) Alleys in visual space. Journal of Mathematical Psychology 19: 221–58. [TI]Google Scholar
Indow, T. (1983) An approach to geometry of visual space with no a priori mapping functions. Journal of Mathematical Psychology (in press). [TI]Google Scholar
Johansson, G. (1978) About the geometry underlying spontaneous visual decoding of the optical message. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. and Buffart, H. F. J. M.. New York: Wiley. [taSG]Google Scholar
Julesz, B. (1960) Binocular depth perception of computer-generated patterns. Bell System Technical Journal 39: 1125–62. [BJ]Google Scholar
Julesz, B. (1962) Towards the automation of binocular depth perception (AUTOMAP). Proceedings of the IFIP Congress 62, 27 Aug–1 Sep 1962, pp. 439444. Amsterdam: North Holland Publishing Co. [BJ]Google Scholar
Julesz, B. (1964) Binocular depth perception without familiarity cues. Science 145: 356–62. [BJ]Google Scholar
Julesz, B. (1971a) Binocular depth perception in man—a cooperative model of stereopsis. In: Pattern recognition in biological and technical systems, eds. Grusser, O.-J. & Klinke, B., p 300315. Proceedings of the German Cybernetic Society, Berlin, 04 6–9, 1970. Berlin-Heidelberg: Springer-Verlag. [BJ]Google Scholar
Julesz, B. (1971b) Foundations of cyclopean perception. Chicago: University of Chicago Press. [HB, taSG, BJ]Google Scholar
Julesz, B. (1974) Cooperative phenomena in binocular depth perception. American Scientist 62: 3243. Reprinted in: Current trends in psychology: Readings from American Scientist ed. Janis, I. L.. Los Altos, Calif.: W. Kaufmann. [BJ]Google Scholar
Julesz, B. (1978a) Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In: Handbook of sensory physiology, Vol. 8. Perception, eds. Held, R., Leibowitz, H. W. & Teuber, H.-L, pp. 215256. Berlin- Heidelberg-New York: Springer-Verlag. [BJ]Google Scholar
Julesz, B. (1978b) Perceptual limits of texture descrimination and their implications to figure-ground separation. In: Formal theories of visual perception, eds. Leeuwenberg, E. L. J. & Buffart, H. F. J. M.. New York: Wiley. [taSG]Google Scholar
Julesz, B. & Chang, J. J. (1976) Interaction between pools of binocular disparity detectors tuned to different disparities. Biological Cybernetics 22: 107–19. [BJ]Google Scholar
Just, M. A. & Carpenter, P. A. (1976) Eye fixations and cognitive processes. Cognitive Psychology 8: 441–80. [DHF]CrossRefGoogle Scholar
Kaczmarek, L. K. & Babloyantz, A. (1977) Spatiotemporal patterns in epileptic seizures. Biological Cybernetics 26: 199208. [taSG]Google Scholar
Kaufman, L. (1974) Sight and mind: An introduction to visual perception. New York: Oxford University Press. [taSG]Google Scholar
Kaufman, L., Bacon, J. & Barroso, F. (1973) Stereopsis without image segregation. Vision Research 13: 137–47. [HB, taSG]Google Scholar
Klatt, D. H. (1980) Speech perception: A model of acoustic-phonetic analysis and lexical access. In: Perception and production of fluent speech. ed. Cole, R. A.. Hillsdale, N.J.: Erlbaum. [taSG]Google Scholar
König, A. & Brodhun, E. (1889) Experimentelle Untersuchungen Über die psychophysische Fundamentalformel in Bezug auf den Gesichtssinn. Sitzungsberichte der preussischen Akademie der Wissenschaften, Berlin 27: 641–44. [HB]Google Scholar
Koffka, K. (1935) Principles of gestalt psychology. New York: Harcourt, Brace. [taSG]Google Scholar
Kulikowski, J. J. (1978) Limit of single vision in stereopsis depends on contour sharpness. Nature 275: 126–27. [taSG]Google Scholar
Laming, D. R. J. (1973) Mathematical psychology. London: Academic Press. [DL]Google Scholar
Land, E. H. (1977) The retinex theory of color vision. Scientific American 237: 108–28. [LEA, taSG]Google Scholar
Land, E. H. & McCann, J. J. (1971) Lightness and retinex theory. Journal of the Optical Society of America 61: 111. [LEA, WELG]Google Scholar
Lanze, M., Weisstein, N. & Harris, J. R. (1982) Perceived depth vs. structural relevance in the object-superiority effect. Perception and Psychophysics 31: 376–82. [taSG]Google Scholar
Leake, B. & Annines, P. (1976) Effects of connectivity on the activity of neural not models. Journal of Theoretical Biology 58: 337–63. [TC]Google Scholar
Leeuwenberg, E. (1982) The perception of assimilation and brightness contrast. Perception and Psychophysics 32: 345–52. [HB]Google Scholar
Legge, C. E. & Foley, J. M. (1980) Contrast masking in human vision. Journal of the Optical Society of America 70: 1458–71. [JMF]Google Scholar
Logge, C. E. & Rubin, G. S. (1981) Binocular interactions in suprathreshold contrast perception. Perception and Psychophysics 30: 4961. [raSG]Google Scholar
LeGrand, Y. (1957) Light, colour, and vision. New York: Dover Press. [rSG]Google Scholar
Leshowitz, B., Taub, H. B. & Raab, D. H. (1968) Visual detection of signals in the presence of continuous and pulsed backgrounds. Perception and Psychophysics 4: 207–13. [DL]Google Scholar
Lettvin, J. Y. (1981) “Filling out the forms”: An appreciation of Hubel and Wiesel. Science 214: 518–20. [taSG]Google Scholar
Levelt, W. J. M. (1965) On binocular rivalry. Soesterberg, Thu Netherlands: Institute for Perception, RVO-TNO. [HB, tarSG]Google Scholar
Levine, D. S. & Crossberg, S. (1976) Visual illusions in neural networks: Line neutralization, tilt aftereffect, and angle expansion. Journal of Theoretical Biology 61: 477504. [tarSG, DSL]Google Scholar
Logan, B. F. Jr, (1977) Information in the zero-crossings of bandpass signals. Bell System Technical Journal 56: 487510. [WELG]Google Scholar
Luneberg, H. K. (1947) Mathematical analysis of binocular vision. Princeton, N.J.: Princeton University Press. [taSG, MW]Google Scholar
Luneberg, R. K. (1950) The metric of binocular visual space. Journal of the Optical Society of America 60: 637–42. [TI]Google Scholar
McCourt, M. E. (1982) A spatial frequency dependent grating-induction effect. Vision Research 22: 119–34. [JMF]Google Scholar
Marr, D. (1974) The computation of lightness by the primate retina. Vision Research 14: 1377. [rSG]CrossRefGoogle ScholarPubMed
Marr, D. (1976) Early processing of visual information. Philosophical Transactions of the Royal Society of London (B) 275: 483524. [WELC, KAS]Google Scholar
Marr, D. (1977) Artificial Intelligence–a personal view. Artificial Intelligence, 9: 3748. [HB, WELG, KAS]Google Scholar
Marr, D. (1978) Representing visual insformation. Lectures on Mathematics in the Life Sciences 10: 101–80. [KAS]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. San Fraiscisco: W. H. Freeman. [BB, WELG]Google Scholar
Marr, D. & Hildreth, E. (1980) Theory of edge detection. Proceedings of the Royal Society of London (B) 207: 187217. [taSG, WELG, KAS]Google Scholar
Marr, D. & Poggio, T. (1976) Cooperative computation of stereo disparity. Science 194: 283–87. [tarSG]Google Scholar
Marr, D. & Poggio, T. (1977) From understanding computation to underatanding neural circuitry. Neurosciences Research Progress Bulletin 15: 470–88. [KAS]Google Scholar
Marr, D. & Poggio, T. (1979) A computational theory of human stereo vision. Proceedings of the Royal Society of London (B) 204:301–28. [JMF, taSG, WELG, KAS]Google Scholar
Maudarbocus, A. Y. & Ruddock, K. H. (1973) Nous-linearity of visual signals in relation to shape-sensitive adaptation processes. Vision Research 13: 1713–37. [DHF]Google Scholar
Mayhew, J. E. W. & Frisby, J. P. (1981) Psychophysical and computatiousal studies towards a theory of human stereopsis. Artificial Intelligence 17: 349–85. [WELG]Google Scholar
Miller, R. F. (1979) The neuroisal basis of ganglion-cell receptive-field organization and the physiology of amacrine cells. In: The neuroscience fourth study program, ed. Schmitt, F. O.. Cambridge, Mass.: MIT Press. [rSG]Google Scholar
Minor, A. V., Flerova, C. I. & Byzov, A. L. (1969) Integral evoked potentials of single neurons in the frog olfactory bulb (in Russian). Neurophysiologica 1: 269–78. [WJF]Google Scholar
Mori, T. (1982) Apparent motious path composed of a serial concatenation of translations and rotations. Biological Cybernetics 44: 3134. [DHF]Google Scholar
Nachmias, J. & Kocher, E. C. (1970) Visual detection and discrimination of luminance increments. Journal of the Optical Society of America 60: 382–89. [DL]Google Scholar
Newell, A. (1980) Harpy, production systems, and human cognition. In: Perception and production of fluent speech. ed. Cole, R.. Hilisdale, N.J.: Erlbaum. [taSG]Google Scholar
O'Brien, V. (1958) Contour perception, illusion and reality. Journal of the Optical Society of America 48:112–19. [SC, taSG]Google Scholar
Osgood, C. E., Suci, G. J. & Tannenbaum, P. H. (1957) The measurement of meaning. Urbana: University of Illinois. [taSG]Google Scholar
Poggio, T. (1980) Neurons sensitive to random-dot stereograms in areas 17 and 18 of rhesus monkey. Society for Neuroscience Abstracts (11) 6. [BJ]Google Scholar
Poggio, T. (1982) Trigger features or Fourier analysis in early vision: A new point of view. In: The recognition of pattern and form, lecture notes in biomathematics, ed. Albrecht, D.. New York: Springer, 44:8899. [WELG]Google Scholar
Pollen, D. A. & Ronner, S. F. (1981) Phase relationships between adjacent simple cells in the visual cortex. Science 212:1409–11. [rSG]Google Scholar
Pollen, D. A. & Ronner, S. F. (1982) Spatial computation performed by simple and complex cells in the visual cortex of the cat. Vision Research 22:101–18. [rSG]Google Scholar
Pulliam, K. (1981) Spatial frequency analysis of three-dimensional vision. Proceedings of the Society of Photo-Optical Instrumentation Engineers 303:7177. [JMF, rSG]Google Scholar
Raaijmakers, J. G. W. & Shiffrin, R. M. (1981) Search of associative memory. Psychological Review 88:93134. [taSG]Google Scholar
Rall, W. (1977) Core conductor theory and cable properties of neurons. In: Handbook of physiology: The nervous system, vol. I, Part I, ed. Kandel, E. R., pp. 3997. Bethesda, Md.: American Physiological Society. [rSG]Google Scholar
Rashevsky, N. (1968) Mathematical biophysics. Chicago: University of Chicago Press. [TI]Google Scholar
Ratliff, F. (1965) Mach bands: Quantitative studies on neural networks in the retina. New York: Holden-Day. [BB, taSG]Google Scholar
Rauschecker, J. P. J., Campbell, F. W. & Atkinson, J. (1973) Colour opponent neurones in the human visual system. Nature 245:4245. [taSG]Google Scholar
Restle, F. (1971) Mathematical models in psychology. Baltimore: Penguin Books. [taSG]Google Scholar
Richards, V. (1975) Visual space perception. In: Handbook of perception, Vol. 5: Seeing, eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Richards, W. & Marr, D. (1981) Computational algorithms for visual processing. M.I.T. Artificial Intelligence Lab. [taSG]Google Scholar
Richards, W. & Miller, J. F. Jr, (1971) The corridor illusion. Perception and Psychophysics 9:421–23. [taSG]Google Scholar
Richter, J. & Ullman, S. (1982) A model for the temporal organization of Xand Y-type receptive fields in the primate retina. Biological Cybernetics 43:127–45. [rSG, WELG]Google Scholar
Robson, J. G. (1975) Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In: Handbook of perception (Vol. 5), eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [taSG]Google Scholar
Robson, J. G. & Graham, N. (1981) Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research 21:409–18. [taSG]Google Scholar
Rock, I. (1977) In defense of unconscious inference. In: Stability and constancy in visual perception, ed. Epstein, W.. New York: Wiley. [HB]Google Scholar
Rodieck, R. W. & Stone, J. (1965) Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 28:833–49. [taSG]Google Scholar
Rozental, S., ed. (1967) Niels Bohr. New York: Wiley. [rSG]Google Scholar
Rushton, W. A. (1965) Visual adaptation. The Ferrier Lecture, 1962. Proceedings of the Royal Society of London (B) 162:2046. [WJF]Google Scholar
Sakata, H. (1981) Mechanism of Craik-O'Brien effect. Vision Research 21:693–99. [rSG]Google Scholar
Schriever, W. (1925) Experimentelle studien über stereokopische sehen. Zeitschrift fuer Psychologie 96:113–70. [SEP]Google Scholar
Schrödinger, E.Müller-Pouillets Lehrbuch der Physik 11. Auflage, Zweiter Band. Brannschweig. [HB]Google Scholar
Schwartz, E. L. (1980) Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research 20:645–69. [taSG]Google Scholar
Sekuler, R. (1975) Visual motion perception. In: Handbook of perception, Vol. 5, eds. Carterette, E. C. & Friedman, M. P.. New York: Academic Press. [rSG]Google Scholar
Shepard, R. N. (1980) Multidimensional scaling, tree-fitting, and clustering. Science 210:390–98. [taSG]Google Scholar
Shepard, R. N. & Chipman, S. (1970) Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology 1:117. [BB]Google Scholar
Shepard, R. N. & Metzler, J. (1971) Mental rotation of three-dimensional objects. Science 171:701–03. [DHF]Google Scholar
Shepherd, G. M. (1972) Synaptic organization of the mammalian olfactory bulb. Physiological Review 52:864917. [WJF]Google Scholar
Shipley, T. (1965) Visual contours in homogeneous space. Science 150:348–50. [taSG]Google Scholar
Singer, W. (1982) The role of attention in developmental plasticity. Human Neurobiology 1:4143. [taSG]Google Scholar
Smith, A. T. & Over, R. (1979) Motion aftereffect with subjective contours. Perception and Psychophysics 25:9598. [taSG]Google Scholar
Sperling, G. (1970) Binocular vision: A physical and a neural theory. American Journal of Psychology 83:461534. [GJD, taSG, BJ]Google Scholar
Sperling, G. (1981) Mathematical models of binocular vision. In: Mathematical psychology and psychophysiology, ed. Crossberg, S.. Providence, R.I.: American Mathematical Society. [taSG]Google Scholar
Sperling, G. & Sondhi, M. M. (1968) Model for visual luminance discrimination and flicker detection. Journal of the Optical Society of America 58:1133–45. [taSG, DSL]Google Scholar
Stevens, S. S. (1959) The quantification of sensation. Daedalus 88:606–21. [taSG]Google Scholar
Stromeyer, C. F. III & Mansfield, R. J. W. (1970) Colored after-effects produced with moving edges. Perception and Psychophysics 7:108–14. [rSG]Google Scholar
Swets, J. A. (1961) Is there a sensory threshold? Science 134:168–77. [DL]Google Scholar
Tschermak-Seysenegg, A. von (1952) Introduction to physiological optics. Boeder, P., trans. Springfield, Ill.: C. C. Thomas. [taSG]Google Scholar
Tynan, P. & Sekuler, R. (1975) Moving visual phantom: A new contour completion effect. Science 188:951–52. [JMF, taSG]Google Scholar
Uttal, W. (1973) The psychobiology of sensory coding. New York: Harper and Row. [BB]Google Scholar
van den Brink, G. & Keemink, C. J. (1976) Luminance gradients and edge effects. Vision Research 16:155–59. [HB]Google Scholar
van Nes, F. L. (1968) Experimental studies in spatio-temporal contrast transfer by the human eye. Utrecht: University. [HB]Google Scholar
van Nes, F. L. & Bouman, M. A. (1965) The effects of wavelength and luminance on visual modulation transfer. Excerpta Medica International Congress Series 125:183–92. [HB]Google Scholar
van Tuijl, H. & Leeuwenberg, E. (1979) Neon color spreading and structural information measures. Perception and Psychophysics 25:269–84. [HB]Google Scholar
von Békésy, G. (1968) Mach- and Hering-type lateral inhibitioms in vision. Vision Research 8:1483–99. [rSG]Google Scholar
Wallach, H. & Adams, P. A. (1954) Binocular rivalry of achromatic colors. American Journal of Psychology 67:513–16. [taSG]Google Scholar
Watson, A. S. (1978) A Riemann geometric explanation of the visual illusions and figural after-effects. In: Formal theories of visual perception, eds. Leeuwenberg, E. C. J. & Buffart, H. F. T. M.. New York: Wiley. [taSG]Google Scholar
Weisstein, N. (1980) The joy of Fourier analysis. In: Visual coding and adaptability, ed. Harris, C. S.. Hillsdale, N.J.: Erlbaum. [rSG]Google Scholar
Weisstein, N. & Harris, C. S. (1980) Masking and the unmasking of distributed representations in the visual system. In: Visual coding and adaptability, ed. Harris, C. S.. Hillsdale, N.J.: Erlbaum. [rSG]Google Scholar
Weisstein, N., Harris, C. S., Berbaum, K., Tangney, J. & Williams, A. (1977) Contrast reduction by small localized stimuli: Extensive spatial spread of above-threshold orientation-selective masking. Vision Research 17:341–50. [rSG]Google Scholar
Weisstein, N. & Maguire, W. (1978) Computing the next step: Psychophysical measures of represemstation and interpretation. In: Computer vision systems, eds. Riseman, E. & Hanson, A.. New York: Academic Press. [rSG]Google Scholar
Weisstein, N., Maguire, W. & Berbaum, K. (1976) Visual phantomns produced by moving subjective contours generate a motion aftereffect. Bulletin of the Psychonomic Society 8:240 (abstract). [rSG]Google Scholar
Weisstein, N., Maguire, W. & Berbaum, K. (1977) A phantom-motion aftereffect. Science 198:955–98. [JMF, taSG]Google Scholar
Weisstein, N., Maguire, W. & Williams, M. C. (1978) Moving phantom contours and the phantom-motion aftereffect vary with perceived depth. Bulletin of the Psychonomnic Society 12:248 (abstract). [rSG]Google Scholar
Weisstein, N., Matthews, M. & Berbaum, K. (1974) Illusory contours can mask real contours. Bulletin of the Psychonomic Society 4:266 (abstract). [rSG]Google Scholar
Werblin, F. S. (1971) Adaptation in a vertebrate retina: lmstracellular recordings in Necturus. Journal of Neurophysiology 34:228–41. [tarSG]Google Scholar
Werner, H. (1937) Dynamics in binocular depth perception. Psychological Monograph (whole no. 218). [taSG]Google Scholar
Wilson, H. R. (1980) A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38:171–78. [JMF]Google Scholar
Wilson, H. R. & Bergen, J. R. (1979) A four-mechamsism model for spatial vision. Vision Research 19:1932. [tarSG]Google Scholar
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12:124. [DBL]Google Scholar
Weisstein, N., Maguire, W. & Berbaum, K. (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:5580. [DSL]Google Scholar
Winston, P. H. (1979) MIT progress in understanding images. Proceedings: Image Understanding Workshop, Palo Alto, California, pp. 2536. [WELG]Google Scholar
Wyatt, H. J. & Daw, N. W. (1975) Directionally sensitive ganglion cells in the rabbit retina: Specificity for stimulus direction, size, and speed. Journal of Neurophysiology 38:613–26. [rSG]Google Scholar
Zucker, S. W. (1980) Motion and the Mueller-Lyer illusion. McGill Department of Electrical Engineering, Technical Report 80∓2R. [WELG]Google Scholar