Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:21:19.721Z Has data issue: false hasContentIssue false

Epitaxial growth of “infinite layer” thin films and multilayers by rf magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

L. Fàbrega
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève, Switzerland
E. Koller
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève, Switzerland
J. M. Triscone
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève, Switzerland
Ø. Fischer
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève, Switzerland
Get access

Abstract

We report on the preparation and characterization of epitaxial ACuO2 (A = Sr, Ca, Ba) thin films and multilayers with the so- called infinite layer (IL) structure, by rf magnetron sputtering. Films and multilayers without Ba have a remarkable crystal quality, whereas those containing this large ion are often multiphased and unstable. In spite of the excellent crystalline quality of these samples, obtaining thin films having both IL structure and displaying superconducting properties has not succeeded; our pure IL samples display semiconducting behavior, and the different procedures tried in order to dope them—annealings, introduction of disorder or cation vacancies, artificial layering—have failed. These results support that the pure IL structure ACuO2 (A = alkaline earth) cannot superconduct.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegrist, T., Zahurac, S. M., Murphy, D. W., and Roth, R. S., Nature (London) 334, 231 (1994).Google Scholar
2.Cava, R. J., Nature (London) 351, 518 (1991).Google Scholar
3.Takano, M., Azuma, M., Hiroi, Z., Bando, Y., and Takeda, Y., Physica C 176, 441 (1991).Google Scholar
4.Azuma, M., Hiroi, Z., Takano, M., Bando, Y., and Takeda, Y., Nature (London) 356, 775 (1992).Google Scholar
5.Smith, M. G.et al., Letters to Nature 351, 549 (1991).Google Scholar
6.Takano, M.et al., Physica C 159 375 (1989).Google Scholar
7.Hiroi, Z., Azuma, M., Takano, M., Bando, Y., and Takeda, Y., Physica C 208, 286 (1993).Google Scholar
8.Zhou, X., Li, J., Wu, F., Yin, B., Jia, S., Yao, Y., and Zhao, Z., Physica C 223, 30 (1994); X. Zhou, F. Wu, B. Yin, W. Liu, Ch. Dong, J. Li, W. Zhu, S. Jia, Y. Yao, and Z. Zhao, Physica C 233, 311 (1994).Google Scholar
9.ShimakawaShaked, Y. Shaked, Y., Hunter, B. A., Hitterman, R. L., Jorgensen, J. D. and Han, P. D., and Payne, D. A., Phys. Rev. B 51, 11 784 (1985).Google Scholar
10.Yazawa, I., Terada, N., Matsutani, K., Sugise, R., Ja, M., and Ihara, H., Jpn. J. Appl. Phys. 29, L566 (1990).Google Scholar
11.Terashima, Y., Sato, R., Takeno, S., Nakamura, S., and Miura, T., Jpn. J. Appl. Phys. 32, L48 (1993).Google Scholar
12.Wen, J. G., Yakabe, H., Kume, A., Shiomara, Y., Koshizuka, N., and Tanaka, S., Physica C 228, 279 (1994).Google Scholar
13.Koller, E.et al., J. Alloys and Compounds 195, 303 (1993).CrossRefGoogle Scholar
14.Koller, E., Miéville, L., Fàbrega, L., Triscone, J-M., and Fischer, Ø.Physica C 235–240, 707 (1994).Google Scholar
15.Satoh, T., Adachi, H., Ichikawa, Y., Setsune, K., and Wasa, K., J. Mater. Res. 9, 1961 (1994).Google Scholar
16.Kanai, M., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 771 (1991).Google Scholar
17.Yoshimoto, M.et al., Physica C 185–189, 2085 (1991).Google Scholar
18.Ma, Q. Y., Dosanjh, P., Enten, I., Liang, R., and Carolan, J. F., J. Appl. Phys. 75, 3089 (1994).Google Scholar
19.Norton, D., Chakoumakos, B. C., Budai, J. D., Lowndes, D. H., Sales, B. C., Thompson, J. R., and Christen, D. K., Science 265, 2074 (1994).Google Scholar
20.Norton, D. P., Budai, J. D., Lowndes, D. H., and Chakoumakos, B. C., Appl. Phys. Lett. 65, 2869 (1994).Google Scholar
21.Wang, H. S., Dietsche, W., Viczian, L., and Pan, X. Q., Physica C 235–240, 977 (1994).Google Scholar
22.Li, X.et al., Jpn. J. Appl. Phys. 31, L217 (1992).Google Scholar
23.Feenstra, R., Li, X., Kanai, M., Kawai, T., Kawai, S., Budai, J. D., Jones, E. C., Sun, Y. R., Thompson, J. R., Pennycook, S. J., and Christen, D. K., Physica C 224, 300 (1994).CrossRefGoogle Scholar
24.Li, X., Kanai, M., and Kawai, T., Jpn. J. Appl. Phys. 33, L18 (1994).Google Scholar
25.Gupta, A., Shaw, T. M., Chern, M. Y., Hussey, B. W., Guloy, A. M., and Scott, B. C., J. Solid State Chem. 114, 190 (1995).Google Scholar
26.Allen, J. L., Mercey, B., Orellier, W., Hamet, J. F., Hervieu, M., and Raveau, B., Physica C 241, 158 (1995).Google Scholar
27.Adachi, H., Sakai, M., Satoh, T., and Setsune, K., Physica C 244, 282 (1995).Google Scholar
28.Li, X., Kawai, T., and Kawai, S., Jpn. J. Appl. Phys. 31, L934 (1992).Google Scholar
29.Norton, D. P., Chakoumakos, B. C., Jones, E. C., Christen, D. K., and Lowndes, D. H., Physica C 217, 146 (1993).Google Scholar
30.S.Wong, A., Ma, Q. Y., Dosanjh, P., Carolan, J. F., and Hardy, W. N., J. Appl. Phys. 78, 1382 (1995).Google Scholar
31.Ahn, C., Triscone, J-M., Archibald, N., Decroux, M., Hammond, R. H., Geballe, T., Fischer, Ø. and Beasley, M. R., Science 269, 373 (1995).Google Scholar
32.Koller, E., Fàbrega, L., Triscone, J-M. and Fischer, Ø., J. Low Temp. Phys. 105, 1325 (1996).Google Scholar
33.Koller, E., Fàbrega, L., Triscone, J-M. and Fischer, Ø., unpublished.Google Scholar