Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T05:26:05.196Z Has data issue: false hasContentIssue false

Deposition and characterization of YBa2Cu3O7−δ/LaMnO3/MgO/TiN heterostructures on Cu metal substrates for development of coated conductors

Published online by Cambridge University Press:  03 March 2011

C. Cantoni
Affiliation:
Oak Ridge National Laboratory–Condensed Matter Science Division, Oak Ridge, Tennessee 37831
D. K. Christen
Affiliation:
Oak Ridge National Laboratory–Condensed Matter Science Division, Oak Ridge, Tennessee 37831
M. Varela
Affiliation:
Oak Ridge National Laboratory–Condensed Matter Science Division, Oak Ridge, Tennessee 37831
J. R. Thompson
Affiliation:
Oak Ridge National Laboratory–Condensed Matter Science Division, Oak Ridge, Tennessee 37831 and Department of Physics, University of Tennessee, Knoxville, Tennesse 37996–1200
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory–Condensed Matter Science Division, Oak Ridge, Tennessee 37831
E. D. Specht
Affiliation:
Oak Ridge National Laboratory–Metals and Ceramics Division, Oak Ridge, Tennessee 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory–Metals and Ceramics Division, Oak Ridge, Tennessee 37831
Get access

Abstract

In this paper a novel buffer layer architecture consisting of LaMnO3/MgO/TiN is proposed as a suitable structural and chemical template for the epitaxial growth of high-transition temperature (Tc) superconductors on Cu metal surfaces. Using techniques such as high-energy electron diffraction and scanning transmission electron microscopy, we present in situ and ex situ analyses of the buffer-layer and superconductor growth with focus on structural properties of the interfaces formed. While MgO is a good barrier to oxygen diffusion, we find that MgO alone is not a suitable buffer layer due to rapid Cu diffusion. Further, growth of MgO with a single epitaxy can be hindered by the presence of impurities such as S, which form strongly bonded superstructures on the metal surface. With the addition of a TiN layer as a barrier to Cu diffusion, oxide formation is suppressed, interfaces are clean, and a single cube-on-cube epitaxy is observed. While the Cu/TiN and TiN/MgO interfaces are rough, the MgO and LaMnO3 layers planarize the material, leading to growth of smooth YBa2Cu3O7−δ (YBCO). Residual strain in the YBCO film is 0.25% or less and does not lead to apparent cracking. The superconducting properties of the samples were investigated by electrical transport and magnetization measurements. For the first time, high critical current density (Jc) values are reported for YBCO films grown on (001) single-crystal and 100‹100›?textured Cu surfaces without intervening metal coatings. Jc on single crystal-like substrates is as high as 3.5 MA/cm2. Reduced Jc of approximately 1 MA/cm2 on rolled Cu tapes is limited by damage to the tape surface during the rolling process.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
2.Goyal, A., Specht, E.D., Kroeger, D.M., and Paranthaman, M., Patent, U.S. No. 5 964 966 (12 October 1999).Google Scholar
3.Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J.R., Kang, B.W., Cantoni, C., Le, D.F., List, F.A., Martin, P.M., Lara, E.-Curio, Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.K., and Ericson, R.E., Physica C 382, 251 (2002).CrossRefGoogle Scholar
4.Prusseit, W., Nemetschek, R., Semerad, R., Holzaphel, B., and Erickemeyer, J., Program and extended abstract of the Fifth International Workshop on Superconductivity co-sponsored by ISTEC and MRS (Honolulu, Hawaii, 2001), p. 87.Google Scholar
5.Boffa, V., Petrisor, T., Annino, C., Fabbri, F., Bettinelli, D., Celentano, G., Ciontea, L., Gambardella, U., Grimaldi, G., Mancini, A., and Galluzi, V., Eur. Conf. Appl. Supercond. (1999).Google Scholar
6.Petrisor, T., Boffa, V., Celentano, G., Ciontea, L., Fabbri, F., Gambardella, U., Ceresara, S., and Scardi, P., IEEE Trans. Appl. Supercond. 9, 2256 (1999).CrossRefGoogle Scholar
7.Boer, B. de, Reger, N., Fernandez, L. G.R., Elickemeyer, J., Berberich, P., Prusseit, W., Holzapfel, B., and Schultz, L., IEEE Trans. Appl. Supercond. 11, 3477 (2001).CrossRefGoogle Scholar
8.Thieme, C.L.H., Annavarapu, S., Zhang, W., Prunier, V., Fritzemeier, L., Li, G., Schoop, U., Rupich, M.W., Gopal, M., Foltyn, S.R., and Holesinger, T., IEEE Trans. Appl. Supercond. 11, 3329 (2001).CrossRefGoogle Scholar
9.Watanabe, T., Ohashi, Y., Ozaki, M., Yamamoto, K., Maeda, T., Wada, K., and Hirabayashi, I., Program and extended abstracts of the Fifth International Workshop on Superconductivity cosponsored by ISTEC and MRS (Honolulu, Hawaii, 2001), p. 21.Google Scholar
10.Yuan, G., Yang, J., and Shi, K., IEEE Trans. Appl. Supercond. 11, 3328 (2001).Google Scholar
11.Thompson, J.R., Goyal, A., Christen, D.K., and Kroeger, D.M., Physica C 370, 169 (2002).CrossRefGoogle Scholar
12.Verebelyi, D.T., Schoop, U., Thieme, C., Li, X., Zhang, W., Kodenkandath, T., Malozemoff, A.P., Nguyen, N., Siegal, E., Buczek, D., Lynch, J., Scudiere, J., Rupich, M., Goyal, A., Specht, E.D., Martin, P., and Paranthaman, M., Supercond. Sci. Technol. 16, L19 (2003).CrossRefGoogle Scholar
13.Goyal, A., Kroeger, D.M., Paranthaman, M., Lee, D.F., Feenstra, R., and Norton, D.P., Patent, U.S. No. 6 451 450 (17 September 2002).Google Scholar
14.Cantoni, C., Aytug, T., Verebelyi, D.T., Paranthaman, M., Specht, E.D., Norton, D.P., and Christen, D.K., IEEE Trans. Appl. Supercond. 11, 3309 Part 3 (2001).CrossRefGoogle Scholar
15.Fu, Y., Tsukamoto, O., and Furse, M., IEEE Trans. Appl. Supercond. 13, 1780 (2003).CrossRefGoogle Scholar
16.Mrowec, S. and Przybylski, K., Oxid. Met. 6, 365 (1977).CrossRefGoogle Scholar
17.Fueki, K. and Wagner, J.B., J. Electrochem. Soc. 112, 384 (1965).CrossRefGoogle Scholar
18.Mrowec, S. and Stoklosa, A., Oxid. Met. 3, 291 (1971).CrossRefGoogle Scholar
19.Sullivan, T.D., in Stress Induced Phenomena in Metallization, edited by Kraft, O., Arzt, E., Volkert, C.A., Ho, P.S., and Okabayashi, H., AIP Conference Proceedings No. 491 (1999), pp. 3950.Google Scholar
20.Aytug, T., Goyal, A., Rutter, N., Paranthaman, M., Thompson, J.R., Zhai, H.Y., and Christen, D.K, J. Mater. Res. 18, 872 (2003).CrossRefGoogle Scholar
21.Cantoni, C., Christen, D.K., Heatherly, L., Kowalewski, M.M., List, F.A., Goyal, A., Ownby, G.W., Zehner, D.M., Kang, B.W., and Kroeger, D.M., J. Mater. Res. 17, 2549 (2002).CrossRefGoogle Scholar
22.Cantoni, C., Christen, D.K., Feenstra, R., Norton, D.P., Goyal, A., Ownby, G.W., and Zehner, D.M., Appl. Phys. Lett. 79, 3077 (2001).CrossRefGoogle Scholar
23.List, F.A. and Lee, D., Continuous Processing and Characterization of Coated Conductors, presented at the 2002 DOE Peer Review, July 17–19, Washington D.C., available from http:// www.ornl.gov/HTSC/fy02peer.htm.Google Scholar
24.Domange, J.L. and Oudar, J., Surf. Sci. 11, 124 (1968).CrossRefGoogle Scholar
25.Colaianni, M.L., Syhler, P., and Chorkendorff, I., Phys. Rev. B: Condens. Matter 52, 2076 (1995).CrossRefGoogle Scholar
26.Colaianni, M.L. and Chorkendorff, I., Phys. Rev. B: Condens. Matter 50, 8798 (1994).CrossRefGoogle Scholar
27.Rousset, S., Gauthier, S., Siboulet, O., Sacks, W., Belin, M., and Klein, J., Phys. Rev. Lett. 63, 1265 (1989).CrossRefGoogle Scholar
28.Yang, M-H. and Flynn, C.P., J. Phys.: Condens. Matter 8, L279 (1996).Google Scholar
29.Manning, P.S., Sirman, J.D., and Kilner, J.A., Solid State Ionics 93, 125 (1997).CrossRefGoogle Scholar
30.Cantoni, C., Christen, D.K., Thompson, J.R., Paranthaman, M., Zhai, H.Y., and Goyal, A. (unpublished).Google Scholar
31.Kim, I., Barnes, P.N., Goyal, A., Barnett, S.A., Biggers, R., Kozlowski, G., Varanasi, C., Maartens, I., Nekkanti, R., Peterson, T., Haughan, T., and Sambasivan, S., Physica C 377, 227 (2002).CrossRefGoogle Scholar
32.Wang, S-Q., Raaijmakers, I., Burrow, B.J., Suthar, S., Redkar, S., and Kim, K-B., J. Appl. Phys. 68, 5176 (1990).CrossRefGoogle Scholar
33.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
34.Pennycook, S.J. and Nellist, P.D., in Impact of Electron and Scanning Probe Microscopy on Materials Research, edited by Rickerby, D.G., Valdré, U., and Valdré, G. (Kluwer Academic, Dordrecht, The Netherlands, 1999), pp. 161207.CrossRefGoogle Scholar
35.Marshall, A.F., Char, K., Barton, R.W., Kapitulnik, A., and Laderman, S.S., J. Mater. Res. 5, 2049 (1990).CrossRefGoogle Scholar
36.Varela, M., Lupini, A.R., Pennycook, S.J., Sefrioui, Z., and Santamaria, J., Solid-State Electron. (2003, in press).Google Scholar
37.Park, C., Norton, D.P., Budai, J.D., Christen, D.K., Verebelyi, D., and Feenstra, R., Appl. Phys. Lett. 73, 1904 (1998).CrossRefGoogle Scholar
38.Verebelyi, D.T., Cantoni, C., Budai, J.D., Christen, D.K., Kim, H.J., and Thompson, J.R., Appl. Phys. Lett. 78, 2031 (2001).CrossRefGoogle Scholar
39.Verebelyi, D.T., Christen, D.K., Feenstra, R., Cantoni, C., Goyal, A., Lee, D.F., Paranthaman, M., Arendt, P.N., Paula, R.F. De, Groves, J.R., and Prouteau, C., Appl. Phys. Lett. 76, 1755 (2000).CrossRefGoogle Scholar
40.Feenstra, R., Ex-Situ Growth of YBCO Thick Films by the BaF2 Process, presented at the 2002 DOE Peer Review on high-T c superconductivity, Washington D.C., July 2002, available from http://www.ornl.gov/HTSC/fy02peer.htm.Google Scholar