Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T00:04:09.631Z Has data issue: false hasContentIssue false

Synthesis of Au nanoclusters supported upon a TiO2 nanotube array

Published online by Cambridge University Press:  03 March 2011

Xi Liu
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080
Thomas F. Jaramillo
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080
Andrei Kolmakov
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-5080
Sung-Hyeon Baeck
Affiliation:
Department of Chemical Engineering, Inha University, Incheon, Korea 402-751
Martin Moskovits
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-5080
Galen D. Stucky
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-5080
Eric W. McFarland*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080
*
a)Address all correspondence to this author. e-mail: mcfar@engineering.ucsb.edu
Get access

Abstract

Gold nanoclusters were successfully deposited in the interior of TiO2 nanotubes fabricated as ordered arrays. This approach is a useful fabrication platform for miniature planar fuel cells, gas sensors, and heterogeneous catalysts. A pressure impregnation process was used to inject the titania and Au precursors into mesoporous alumina. After thermal treatment, Au nanoclusters were well-dispersed on the interior walls of nanotubular TiO2. The TiO2 nanotubes were shown by x-ray diffraction to be entirely anatase. Transmission electron microscopy imaging confirmed that 80% of the Au particles were 4.1 nm ± 2.0 nm in diameter. This material exhibited catalytic CO oxidation activity at low temperatures.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Photocatalytic Purification and Treatment of Water and Air, edited by Ollis, D.F. and Al-Ekabi, H. (Elsevier, Amsterdam, The Netherlands, 1993), p. 820.Google Scholar
2.Lichtin, N.N., Avudaithai, M., Berman, E. and Dong, J.: Photocatalytic oxidative-degradation of vapors of some organic-compounds over TiO2. Res. Chem. Intermed. 20, 775 (1994).Google Scholar
3.Moran-Pinda, M., Castillo, S. and Gomez, R.: Low temperature CO oxidation on Au/TiO2 sol-gel catalysts. React. Kinet. Catal. Lett. 76, 375 (2002).Google Scholar
4.Zhao, Z.W., Tay, B.K., Lau, S.P. and Yu, G.Q.: Optical properties of titania films prepared by off-plane filtered cathodic vacuum arc. J. Cryst. Growth 268, 543 (2004).Google Scholar
5.Mills, A., Elliott, N., Parkin, I.P., O’Neill, S.A. and Clark, R.J.: Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobio A 151, 171 (2002).CrossRefGoogle Scholar
6.Dag, O., Ozin, G.A., Yang, H., Reber, C. and Bussiere, G.: Photoluminescent silicon clusters in oriented hexagonal mesoporous silica film. Adv. Mater. 11, 474 (1999).3.0.CO;2-I>CrossRefGoogle Scholar
7.Overbury, S.H., Ortiz-Soto, L., Zhu, H.G., Lee, B., Amiridis, M.D. and Dai, S.: Comparison of Au catalysts supported on mesoporous titania and silica: investigation of Au particle size effects and metal-support interactions. Catal. Lett. 95, 99 (2004).Google Scholar
8.Fan, H.Y., Yang, K., Boye, D.M., Sigmon, T., Malloy, K.J., Xu, H.F., Lopez, G.P. and Brinker, C.J.: Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304, 567 (2004).Google Scholar
9.Pietron, J.J., Stroud, R.M. and Rolison, D.R.: Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett. 2, 545 (2002).CrossRefGoogle Scholar
10.Valden, M., Lai, X. and Goodman, D.W.: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647 (1998).Google Scholar
11.Hostetler, M.J., Zhong, C-J., Yen, B.K.H., Anderegg, J., Gross, S.M., Evans, N.D., Porter, M. and Murray, R.W.: Stable, monolayer-protected metal alloy clusters. J. Am. Chem. Soc. 120, 9396 (1998).CrossRefGoogle Scholar
12.Haruta, M. and Date, M.: Advances in the catalysis of Au nanoparticles. Appl. Catal. A-Gen. 222, 427 (2002).CrossRefGoogle Scholar
13.Gupta, N.M. and Tripathi, A.K.: The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 catalyst. Gold Bull. 34, 120 (2001).CrossRefGoogle Scholar
14.Mohr, C., Hofmeister, H., Radnik, J. and Claus, P.: Identification of active sites in gold-catalyzed hydrogenation of acrolein. J. Am. Chem. Soc. 125, 1905 (2003).CrossRefGoogle ScholarPubMed
15.Hayashi, T., Tanaka, K. and Haruta, M.: Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566 (1998).CrossRefGoogle Scholar
16.Prasad, B.L.V., Stoeva, S.I., Sorensen, C.M. and Klabunde, K.J.: Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18, 7515 (2002).CrossRefGoogle Scholar
17.Spatz, J.P., Mossmer, S., Moller, M., Herzog, T., Plettl, A. and Ziemann, P.: Functional nanostructures by organized macromolecularmetallic hybrid systems. J. Lumin. 76–77, 168 (1998).CrossRefGoogle Scholar
18.Lakshmi, B.B., Patrissi, C.J. and Martin, C.R.: Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 9, 2544 (1997).CrossRefGoogle Scholar
19.Michailowski, A., AlMawlawi, D., Cheng, G.S. and Moskovits, M.: Highly regular anatase nanotube arrays fabricated in porous anodic templates. Chem. Phys. Lett. 349, 1 (2001).CrossRefGoogle Scholar
20.Jaramillo, T.F., Baeck, S.B., Cuenya, B.R. and McFarland, E.W.: Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148 (2003).CrossRefGoogle ScholarPubMed
21.Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K. and Fujishima, A.: Efficient TiO2 powder and film photocatalysts with rutile crystal structure. Chem. Lett. 1, 69 (1996).CrossRefGoogle Scholar
22.Ravi, B.G., Ramesh, P.D., Gupta, N. and Rao, K.J.: Microwave assisted preparation and sintering of Al2O3, ZrO2 and their composites from metalorganics. J. Mater. Chem. 7, 2043 (1997).CrossRefGoogle Scholar
23.Bond, G.C. and Thompson, D.T.: Gold-catalysed oxidation of carbon monoxide. Gold Bull. 33, 41 (2000).Google Scholar