Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T04:02:04.707Z Has data issue: false hasContentIssue false

Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes

Published online by Cambridge University Press:  02 February 2015

Li Chen
Affiliation:
Singapore Institute for Clinical Sciences
Hong Pan
Affiliation:
Singapore Institute for Clinical Sciences Nanyang Technological University
Ta Anh Tuan
Affiliation:
National University of Singapore
Ai Ling Teh
Affiliation:
Singapore Institute for Clinical Sciences
Julia L. MacIsaac
Affiliation:
University of British Columbia
Sarah M. Mah
Affiliation:
University of British Columbia
Lisa M. McEwen
Affiliation:
University of British Columbia
Yue Li
Affiliation:
National University of Singapore
Helen Chen
Affiliation:
KK Women's and Children's Hospital, Singapore
Birit F. P. Broekman
Affiliation:
Singapore Institute for Clinical Sciences National University Health System, Singapore
Jan Paul Buschdorf
Affiliation:
Singapore Institute for Clinical Sciences
Yap Seng Chong
Affiliation:
Singapore Institute for Clinical Sciences National University Health System, Singapore
Kenneth Kwek
Affiliation:
KK Women's and Children's Hospital, Singapore Duke–National University of Singapore
Seang Mei Saw
Affiliation:
National University of Singapore National University Health System, Singapore
Peter D. Gluckman
Affiliation:
Singapore Institute for Clinical Sciences University of Auckland
Marielle V. Fortier
Affiliation:
KK Women's and Children's Hospital, Singapore
Anne Rifkin-Graboi
Affiliation:
Singapore Institute for Clinical Sciences
Michael S. Kobor
Affiliation:
University of British Columbia
Anqi Qiu
Affiliation:
Singapore Institute for Clinical Sciences National University of Singapore
Michael J. Meaney*
Affiliation:
Singapore Institute for Clinical Sciences McGill University
Joanna D. Holbrook*
Affiliation:
Singapore Institute for Clinical Sciences
*
Address correspondence and reprint requests to: Joanna D. Holbrook, Singapore Institute for Clinical Sciences, 30 Medical Drive, Singapore 116709; E-mail: Joanna_holbrook@sics.a-star.edu.sg; and/or Michael J. Meaney, Ludmer Centre for Neuroinformatics & Mental Health, Douglas University Mental Health Research Institute, McGill University, 6875 LaSalle, Montreal, Quebec, H4H1R3, Canada; E-mail: Michael.meaney@mcGill.ca.
Address correspondence and reprint requests to: Joanna D. Holbrook, Singapore Institute for Clinical Sciences, 30 Medical Drive, Singapore 116709; E-mail: Joanna_holbrook@sics.a-star.edu.sg; and/or Michael J. Meaney, Ludmer Centre for Neuroinformatics & Mental Health, Douglas University Mental Health Research Institute, McGill University, 6875 LaSalle, Montreal, Quebec, H4H1R3, Canada; E-mail: Michael.meaney@mcGill.ca.

Abstract

Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine–phosphate–guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine–phosphate–guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, J. L., Khan, S., Liberzon, I., & Young, E. A. (2007). HPA axis activity in patients with panic disorder: Review and synthesis of four studies. Depression and Anxiety, 24, 6676.Google Scholar
Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., Moya, J., Villa, H., et al. (2009). Early adversity and 5-HTT/BDNF genes: New evidence of gene–environment interactions on depressive symptoms in a general population. Psychological Medicine, 39, 14251432.CrossRefGoogle ScholarPubMed
Alexander, N., Osinsky, R., Schmitz, A., Mueller, E., Kuepper, Y., & Hennig, J. (2010). The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 35, 949953.CrossRefGoogle ScholarPubMed
Barton, S. J., Crozier, S. R., Lillycrop, K. A., Godfrey, K. M., & Inskip, H. M. (2013). Correction of unexpected distributions of p values from analysis of whole genome arrays by rectifying violation of statistical assumptions. BMC Genomics, 14, 161.Google Scholar
Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., Udine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419421.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.CrossRefGoogle ScholarPubMed
Binder, E. B., Bradley, R. G., Liu, W., Epstein, M. P., Deveau, T. C., Mercer, K. B., et al. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. Journal of the American Medical Association, 299, 12911305.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Bradley, R. H., & Corwyn, R. F. (2008). Infant temperament, parenting, and externalizing behavior in first grade: A test of the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry and Allied Discipline, 49, 124131.Google Scholar
Bromer, C., Marsit, C. J., Armstrong, D. A., Padbury, J. F., & Lester, B. (2013). Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Developmental Psychobiology, 55, 673683.CrossRefGoogle ScholarPubMed
Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology, 35, 141153.CrossRefGoogle ScholarPubMed
Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences, 109, E1312E1319.Google Scholar
Carver, C. S., Johnson, S. L., Joormann, J., Lemoult, J., & Cuccaro, M. L. (2011). Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis. Journal of Affective Disorders, 132, 8993.Google Scholar
Casey, B. J., Glatt, C. E., Tottenham, N., Soliman, F., Bath, K., Amso, D., et al. (2009). Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 164, 108120.CrossRefGoogle Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.Google Scholar
Champagne, F. A. (2012). Interplay between social experiences and the genome: Epigenetic consequences for behavior. Advances in Genetics, 77, 3357.Google Scholar
Chen, J., Li, X., & McGue, M. (2013). The interacting effect of the BDNF Val66Met polymorphism and stressful life events on adolescent depression is not an artifact of gene–environment correlation: Evidence from a longitudinal twin study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54, 10661073.CrossRefGoogle Scholar
Chen, Z. Y., Ieraci, A., Teng, H., Dall, H., Meng, C. X., Herrera, D. G., et al. (2005). Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. Journal of Neuroscience, 25, 61566166.CrossRefGoogle Scholar
Chen, Z. Y., Jing, D., Bath, K. G., Ieraci, A., Khan, T., Siao, C. J., et al. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science, 314, 140143.Google Scholar
Clarke, A. S., & Schneider, M. L. (1993). Prenatal stress has long-term effects on behavioral responses to stress in juvenile rhesus monkeys. Developmental Psychobiology, 26, 293304.CrossRefGoogle ScholarPubMed
Coe, C. L., Kramer, M., Czeh, B., Gould, E., Reeves, A. J., Kirschbaum, C., et al. (2003). Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biological Psychiatry, 54, 10251034.Google Scholar
Davies, M. N., Krause, L., Bell, J. T., Gao, F., Ward, K. J., Wu, H., et al. (2014). Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biology, 15, R56.CrossRefGoogle ScholarPubMed
Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H., Sotiriou, C., & Fuks, F. (2011). Evaluation of the Infinium Methylation 450 K technology. Epigenomics, 3, 771784.Google Scholar
Dennis, C. L., Coghlan, M., & Vigod, S. (2013). Can we identify mothers at risk for postpartum anxiety in the immediate postpartum period using the State–Trait Anxiety Inventory? Journal of Affective Disorders, 150, 12171220.CrossRefGoogle ScholarPubMed
Devlin, A. M., Brain, U., Austin, J., & Oberlander, T. F. (2010). Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLOS ONE, 5, e12201.Google Scholar
Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 11161127.CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans–Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Essex, M. J., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M. et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 5875.Google Scholar
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.CrossRefGoogle ScholarPubMed
Feil, R., & Fraga, M. F. (2011). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews, Genetics, 13, 97109.Google Scholar
Field, T., Diego, M., Hernandez-Reif, M., Schanberg, S., Kuhn, C., Yando, R., et al. (2003). Pregnancy anxiety and comorbid depression and anger: Effects on the fetus and neonate. Depression and Anxiety, 17, 140151.Google Scholar
Filiberto, A. C., Maccani, M. A., Koestler, D., Wilhelm-Benartzi, C., Avissar-Whiting, M., Banister, C. E., et al. (2011). Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics, 6, 566572.Google Scholar
Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681695.Google Scholar
Grant, K. A., McMahon, C., & Austin, M. P. (2008). Maternal anxiety during the transition to parenthood: A prospective study. Journal of Affective Disorders, 108, 101111.CrossRefGoogle ScholarPubMed
Groves, J. O. (2007). Is it time to reassess the BDNF hypothesis of depression? Molecular Psychiatry, 12, 10791088.Google Scholar
Gunnar, M. R., Wenner, J. A., Thomas, K. M., Glatt, C. E., McKenna, M. C., & Clark, A. G. (2012). The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems. Development and Psychopathology, 24, 12151223.CrossRefGoogle ScholarPubMed
Hajcak, G., Castille, C., Olvet, D. M., Dunning, J. P., Roohi, J., & Hatchwell, E. (2009). Genetic variation in brain-derived neurotrophic factor and human fear conditioning. Genes, Brain, and Behavior, 8, 8085.CrossRefGoogle ScholarPubMed
Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 66906694.CrossRefGoogle ScholarPubMed
Hayden, E. P., Klein, D. N., Dougherty, L. R., Olino, T. M., Dyson, M. W., Durbin, C. E., et al. (2010). The role of brain-derived neurotrophic factor genotype, parental depression, and relationship discord in predicting early-emerging negative emotionality. Psychological Science, 21, 16781685.Google Scholar
Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental Neurology, 233, 102111.Google Scholar
Heim, C., & Nemeroff, C. B. (2009). Neurobiology of posttraumatic stress disorder. CNS Spectrums, 14(Suppl. 1), 1324.Google Scholar
Hettema, J. M., Neale, M. C., & Kendler, K. S. (2001). A review and meta-analysis of the genetic epidemiology of anxiety disorders. American Journal of Psychiatry, 158, 15681578.Google Scholar
Hilt, L. M., Sander, L. C., Nolen-Hoeksema, S., & Simen, A. A. (2007). The BDNF Val66Met polymorphism predicts rumination and depression differently in young adolescent girls and their mothers. Neuroscience Letters, 429, 1216.CrossRefGoogle ScholarPubMed
Hompes, T., Izzi, B., Gellens, E., Morreels, M., Fieuws, S., Pexsters, A., et al. (2013). Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. Journal of Psychiatric Research, 47, 880891.Google Scholar
Huizink, A. C., de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 10781085.CrossRefGoogle ScholarPubMed
Hunnerkopf, R., Strobel, A., Gutknecht, L., Brocke, B., & Lesch, K. P. (2007). Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits. Neuropsychopharmacology, 32, 25522560.Google Scholar
Jiang, L., Willner, D., Danoy, P., Xu, H., & Brown, M. A. (2013). Comparison of the performance of two commercial genome-wide association study genotyping platforms in Han Chinese samples. G3 (Bethesda, Md.), 3, 2329.Google Scholar
Jiang, X., Xu, K., Hoberman, J., Tian, F., Marko, A. J., Waheed, J. F., et al. (2005). BDNF variation and mood disorders: A novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology, 30, 13531361.Google Scholar
Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8, 253262.Google Scholar
Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118127.Google Scholar
Juhasz, G., Foldi, I., & Penke, B. (2011). Systems biology of Alzheimer's disease: How diverse molecular changes result in memory impairment in AD. Neurochemistry International, 58, 739750.Google Scholar
Kim, C. H., Cheon, K. A., Koo, M. S., Ryu, Y. H., Lee, J. D., Chang, J. W., et al. (2007). Dopamine transporter density in the basal ganglia in obsessive–compulsive disorder, measured with [123I]IPT SPECT before and after treatment with serotonin reuptake inhibitors. Neuropsychobiology, 55, 156162.Google Scholar
Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., et al. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735737.CrossRefGoogle ScholarPubMed
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nature Neuroscience, 16, 3341.Google Scholar
Krishnan, V., Han, M. H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., et al. (2007). Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 131, 391404.Google Scholar
Labonte, B., Yerko, V., Gross, J., Mechawar, N., Meaney, M. J., Szyf, M., et al. (2012). Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biological Psychiatry, 72, 4148.CrossRefGoogle Scholar
Lau, J. Y., Goldman, D., Buzas, B., Hodgkinson, C., Leibenluft, E., Nelson, E., et al. (2010). BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. NeuroImage, 53, 952961.Google Scholar
Lonsdorf, T. B., Weike, A. I., Golkar, A., Schalling, M., Hamm, A. O., & Ohman, A. (2010). Amygdala-dependent fear conditioning in humans is modulated by the BDNF val66met polymorphism. Behavioral Neuroscience, 124, 915.Google Scholar
Martinowich, K., & Lu, B. (2008). Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology, 33, 7383.CrossRefGoogle ScholarPubMed
Mata, J., Thompson, R. J., & Gotlib, I. H. (2010). BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology, 29, 130133.Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.Google Scholar
McHughen, S. A., Rodriguez, P. F., Kleim, J. A., Kleim, E. D., Marchal Crespo, L., Procaccio, V., et al. (2010). BDNF val66met polymorphism influences motor system function in the human brain. Cerebral Cortex, 20, 12541262.Google Scholar
Meaney, M. J., & Ferguson-Smith, A. C. (2010). Epigenetic regulation of the neural transcriptome: The meaning of the marks. Nature Neuroscience, 13, 13131318.Google Scholar
Meaney, M. J., LeDoux, J. E., & Leibowitz, M. L. (2008). Neurobiology of anxiety disorders. In Tasman, A., Kay, J., Lieberman, J. A., First, M. B., & Maj, M. (Eds.), Psychiatry (Vol. 1, 3rd ed., pp. 317338). Chichester: Wiley.Google Scholar
Mennes, M., Stiers, P., Lagae, L., & Van den Bergh, B. (2006). Long-term cognitive sequelae of antenatal maternal anxiety: Involvement of the orbitofrontal cortex. Neuroscience & Biobehavioral Reviews, 30, 10781086.CrossRefGoogle ScholarPubMed
Montag, C., Basten, U., Stelzel, C., Fiebach, C. J., & Reuter, M. (2010). The BDNF Val66Met polymorphism and anxiety: Support for animal knock-in studies from a genetic association study in humans. Psychiatry Research, 179, 8690.CrossRefGoogle ScholarPubMed
Montag, C., Reuter, M., Newport, B., Elger, C., & Weber, B. (2008). The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study. NeuroImage, 42, 15541559.Google Scholar
Mulligan, C., D'Errico, N., Stees, J., & Hughes, D. (2012). Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics, 7, 853857.Google Scholar
Murray, L., Creswell, C., & Cooper, P. J. (2009). The development of anxiety disorders in childhood: An integrative review. Psychological Medicine, 39, 14131423.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.CrossRefGoogle ScholarPubMed
Ong, M. L., & Holbrook, J. D. (2013). Novel region discovery method for Infinium 450 K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell, 13, 142155.Google Scholar
Pan, H., Chen, L., Dogra, S., Ling Teh, A., Tan, J. H., Lim, Y. I., et al. (2012). Measuring the methylome in clinical samples: Improved processing of the Infinium Human Methylation450 BeadChip Array. Epigenetics, 7, 11731187.CrossRefGoogle ScholarPubMed
Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., & Stein, M. B. (2003). Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage, 19, 14391448.Google Scholar
Perroud, N., Dayer, A., Piguet, C., Nallet, A., Favre, S., Malafosse, A., et al. (2014). Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. British Journal of Psychiatry, 204, 3035.CrossRefGoogle ScholarPubMed
Perroud, N., Paoloni–Giacobino, A., Prada, P., Olie, E., Salzmann, A., Nicastro, R., et al. (2011). Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Translational Psychiatry, 1, e59.Google Scholar
Petryshen, T. L., Sabeti, P. C., Aldinger, K. A., Fry, B., Fan, J. B., Schaffner, S. F., et al. (2010). Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Molecular Psychiatry, 15, 810815.Google Scholar
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 2938.Google Scholar
Pluess, M., Velders, F. P., Belsky, J., van IJzendoorn, M. H., Bakermans–Kranenburg, M. J., Jaddoe, V. W., et al. (2011). Serotonin transporter polymorphism moderates effects of prenatal maternal anxiety on infant negative emotionality. Biological Psychiatry, 69, 520525.Google Scholar
Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y. S., Kwek, K., Gluckman, P. D., et al. (2013). Maternal anxiety and infants' hippocampal development: Timing matters. Translational Psychiatry, 3, e306.Google Scholar
Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., et al. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21.Google Scholar
Rakyan, V. K., Down, T. A., Balding, D. J., & Beck, S. (2011). Epigenome-wide association studies for common human diseases. Nature Reviews Genetics, 12, 529541.Google Scholar
Rauch, S. L., Savage, C. R., Alpert, N. M., Fischman, A. J., & Jenike, M. A. (1997). The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biological Psychiatry, 42, 446452.Google Scholar
Rifkin-Graboi, A., Bai, J., Chen, H., Hameed, W. B., Sim, L. W., Tint, M. T., et al. (2013). Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biological Psychiatry, 74, 837844.CrossRefGoogle ScholarPubMed
Risbrough, V. B., & Stein, M. B. (2006). Role of corticotropin releasing factor in anxiety disorders: A translational research perspective. Hormones and Behavior, 50, 550561.Google Scholar
Rosenbaum, J. F., Biederman, J., Bolduc-Murphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., et al. (1993). Behavioral inhibition in childhood: A risk factor for anxiety disorders. Harvard Review of Psychiatry, 1, 216.Google Scholar
Roth, T. L., & Sweatt, J. D. (2011). Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry, 52, 398408.Google Scholar
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.Google Scholar
Rybakowski, J. K. (2008). BDNF gene: Functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics, 9, 15891593.Google Scholar
Schroeder, J. W., Smith, A. K., Brennan, P. A., Conneely, K. N., Kilaru, V., Knight, B. T., et al. (2012). DNA methylation in neonates born to women receiving psychiatric care. Epigenetics, 7, 409414.Google Scholar
Shalev, I., Lerer, E., Israel, S., Uzefovsky, F., Gritsenko, I., Mankuta, D., et al. (2009). BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions. Psychoneuroendocrinology, 34, 382388.Google Scholar
Soh, S. E., Tint, M. T., Gluckman, P. D., Godfrey, K. M., Rifkin-Graboi, A., Chan, Y. H., et al. (2013). Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. International Journal of Epidemiology, 43, 14011409.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the State–Trait Anxiety Inventory. Retrieved from https://ubir.buffalo.edu/xmlui/handle/10477/2895Google Scholar
Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology, 38, 12201235.Google Scholar
Steiger, H., Labonte, B., Groleau, P., Turecki, G., & Israel, M. (2013). Methylation of the glucocorticoid receptor gene promoter in bulimic women: Associations with borderline personality disorder, suicidality, and exposure to childhood abuse. International Journal of Eating Disorder, 46, 246255.Google Scholar
Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318327.CrossRefGoogle ScholarPubMed
Suzuki, A., Matsumoto, Y., Shibuya, N., Ryoichi, S., Kamata, M., Enokido, M., et al. (2012). Interaction effect between the BDNF Val66Met polymorphism and parental rearing for interpersonal sensitivity in healthy subjects. Psychiatry Research, 200, 945948.Google Scholar
Taylor, R. C., Sanfilippo, A., McDermott, J. E., Baddeley, B., Riensche, R., Jensen, R., et al. (2010). Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts. International Journal of Computational Biology and Drug Design, 4, 5682.Google Scholar
Teh, A. L., Pan, H., Chen, L., Ong, M. L., Dogra, S., Wong, J., et al. (2014). The effect of genotype and in utero environment on inter-individual variation in neonate DNA methylomes. Genome Research, 24, 10641074.Google Scholar
Teixeira, J. M., Fisk, N. M., & Glover, V. (1999). Association between maternal anxiety in pregnancy and increased uterine artery resistance index: Cohort based study. British Medical Journal, 318, 153157.Google Scholar
Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLOS ONE, 7, e30148.Google Scholar
Uher, R., & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis. Molecular Psychiatry, 13, 131146.Google Scholar
Van den Bergh, B. R., Mulder, E. J., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience & Biobehavioral Reviews, 29, 237258.Google Scholar
Wagner, S., Baskaya, O., Dahmen, N., Lieb, K., & Tadic, A. (2010). Modulatory role of the brain-derived neurotrophic factor Val66Met polymorphism on the effects of serious life events on impulsive aggression in borderline personality disorder. Genes, Brain, and Behavior, 9, 97102.Google Scholar
Wang, C., Zhang, Y., Liu, B., Long, H., Yu, C., & Jiang, T. (2014). Dosage effects of BDNF Val66Met polymorphism on cortical surface area and functional connectivity. Journal of Neuroscience, 34, 26452651.CrossRefGoogle ScholarPubMed
Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neuroscience & Biobehavioral Reviews, 21, 110.Google Scholar
Wendland, J. R., Kruse, M. R., Cromer, K. R., & Murphy, D. L. (2007). A large case-control study of common functional SLC6A4 and BDNF variants in obsessive-compulsive disorder. Neuropsychopharmacology, 32, 25432551.Google Scholar
Wichers, M., Kenis, G., Jacobs, N., Mengelers, R., Derom, C., Vlietinck, R., et al. (2008). The BDNF Val(66)Met × 5-HTTLPR × Child Adversity interaction and depressive symptoms: An attempt at replication. American Journal of Medical Genetics, 147B, 120123.Google Scholar
Willoughby, M. T., Mills-Koonce, R., Propper, C. B., & Waschbusch, D. A. (2013). Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional defiant and callous–unemotional behaviors at age 3 years. Development and Psychopatholoy, 25, 903917.CrossRefGoogle ScholarPubMed
Wright, C. I., Martis, B., McMullin, K., Shin, L. M., & Rauch, S. L. (2003). Amygdala and insular responses to emotionally valenced human faces in small animal specific phobia. Biological Psychiatry, 54, 10671076.CrossRefGoogle ScholarPubMed
Xie, P., Kranzler, H. R., Poling, J., Stein, M. B., Anton, R. F., Farrer, L. A., et al. (2010). Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology, 35, 16841692.Google Scholar
Zhang, T. Y., & Meaney, M. J. (2010) Epigenetics and the environmental regulation of the genome and its function. Annual Reviews of Psychology, 61, 439466.CrossRefGoogle ScholarPubMed