Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T22:45:01.763Z Has data issue: false hasContentIssue false

Kepler, Newton and numerical analysis

Published online by Cambridge University Press:  10 May 2010

G. Wanner
Affiliation:
University of Geneva, Section de Mathématiques, CP 64, CH-1211 Genève 4, Switzerland, E-mail: Gerhard.Wanner@unige.ch

Extract

Numerical methods are usually constructed for solving mathematical problems such as differential equations or optimization problems. In this contribution we discuss the fact that numerical methods, applied inversely, were also important in establishing these models. We show in detail the discovery of the laws of planetary motion by Kepler and Newton, which stood at the beginning of modern science. The 400th anniversary of the publication of Kepler's laws (1609) is a good occasion for this investigation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnol'd, V. I. (1989), Huygens and Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvements to Quasicrystals, Nauka Moskva (1989). English translation: Birkhäuser (1990).Google Scholar
Barrow, I. (1670), Geometrical Lectures: Explaining the Generation, Nature and Properties of Curve Lines, translated from the Latin edition (published 1670), revised, corrected and amended by Isaac Newton, edited by Edmund Stone, published in London (1735).Google Scholar
Beckman, B. (2006), ‘Feynman says: Newton implies Kepler, no calculus needed!J. Symbolic Geom. 1, 5772.Google Scholar
Copernicus, N. (1543), De Revolutionibus Orbium Coelestium, published in Nuremberg. Original manuscript preserved in the Jagiellonian University Library, Kraków, Poland.Google Scholar
De Vogelaere, R. (1956), Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Report no. 4, Department of Mathematics, University of Notre Dame, IN.Google Scholar
Euler, L. (E65 1744), Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, published in Lausanne and Geneva. Reprinted in Opera Omnia, Ser. I, Vol. XXIV.CrossRefGoogle Scholar
Euler, L. (E112 1749), Recherches sur le Mouvement des Corps Célestes en Général, Vol. 3 of Mem. de l'Acad. des Sciences de Berlin, pp. 93–143. Reprinted in Opera Omnia, Ser. II, Vol. XXV, pp. 144.Google Scholar
Euler, L. (E301 1766), De Motu Corporis ad Duo Centra Virium Fixa Attracti, Vol. 10 of Novi Comm. Acad. Scient. Petropolitanae, pp. 207–242. Reprinted in Opera Omnia, Ser. II, Vol. VI, pp. 209246.Google Scholar
Euler, L. (E328 1767), De Motu Corporis ad Duo Centra Virium Fixa Attracti, Vol. 11 of Novi Comm. Acad. Scient. Petropolitanae, pp. 152–184. Reprinted in Opera Omnia, Ser. II, Vol. VI, pp. 247273.Google Scholar
Euler, L. (E342 1768), Institutiones Calculi Integralis, Vol. I, St. Petersburg. Reprinted in Opera Omnia, Ser. I, Vol. XI.Google Scholar
Euler, L. (E366 1769), Institutiones Calculi Integralis, Vol. II, St. Petersburg. Reprinted in Opera Omnia, Ser. I, Vol. XII.Google Scholar
Euler, L. (E385 1770), Institutiones Calculi Integralis, Vol. III, St. Petersburg. Reprinted in Opera Omnia, Ser. I, Vol. XIII.Google Scholar
Feynman, R. (1967), The Character of Physical Law, MIT Press.Google Scholar
Feynman, R. (1994), Six Easy Pieces: Essentials of Physics, Explained by its Most Brilliant Teacher, Perseus Books.Google Scholar
Fourier, J. B. J. (1822): La Théorie Analytique de la Chaleur, Paris. A manuscript from 1807, Sur la Propagation de la Chaleur, had its publication refused ‘due to lack of rigour’.Google Scholar
Galilei, G. (1629), Les Méchaniques de Galilée, Mathématicien & Ingénieur du Duc de Florence, Traduites de l'Italien par le P. Marin Mersenne, 1629 manuscript published in Paris (1634). Critical edition by B. Rochod, Paris (1966).Google Scholar
Galilei, G. (1638), Discorsi e Dimostrazioni Matematiche, Intorno à Due Nuove Scienze, Attenti Alla Mecanica & i Movimenti Locali, del Signor Galileo Galilei Linceo, Elsevier, Leiden. Critical edition by E. Giusti, Giulio Einaudi Editore, Torino (1990). German translation by A. von Oettingen, Ostwald's Klassiker, Leipzig (1890/91).Google Scholar
Goodstein, D. L. and Goodstein, J. R. (1996), Feynman's Lost Lecture: The Motion of Planets Around the Sun, Norton, New York.Google Scholar
Hairer, E., Lubich, C. and Wanner, G. (2003), Geometric numerical integration illustrated by the Störmer-Verlet method. In Vol. 12 of Acta Numerica, Cambridge University Press, pp. 399450.Google Scholar
Hairer, E., Lubich, C. and Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin.Google Scholar
Hairer, E., Nørsett, S. P. and Wanner, G. (1993), Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn, Springer, Heidelberg.Google Scholar
Huygens, C. (1673), Horologium Oscillatorium, Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, published in Paris.Google Scholar
Kepler, J. (1604), Ad Vitellionem Paralipomena, Quibus Astronomiae Pars Optica Traditur, Potissimum de Artificiosa Observatione et Aestimatione Diametrorum Deliquiorumque, Solis & Lunae cum Exemplis Insignium Eclipsium. Reprinted in Gesammelte Werke, Vol. 2.Google Scholar
Kepler, J. (1609), Astronomia Nova: Aἰτιoλoγóς seu Physica Coelestis, Traditia Commentariis de Motibus Stellae Martis, ex Observationibus G. V. Tychonis Brahe, published in Prague. Reprinted in Gesammelte Werke, Vol. 3, edited by M. Caspar (1937). French translation by J. Peyroux (1979).Google Scholar
Kepler, J. (1619), Harmonices Mundi, Libri V, published in Linz. Reprinted in Gesammelte Werke, Vol. 6, edited by M. Caspar (1940).Google Scholar
Kepler, J. (1627), Tabulae Rudolphinae, published in Ulm. Reprinted in Gesammelte Werke vol. 10, edited by F. Hammer (1969).Google Scholar
de Lagrange, J. L. (1759), ‘Recherches sur la nature et la propagation du son’, Miscellanea Taurinensia, Vol. I. Oeuvres, Vol. 1, pp. 39148.Google Scholar
Leibniz, G. W. (1693), Supplementum Geometriae Dimensoriae seu Generalissima Omnium Tetragonismorum Effectio per Motum: Similiterque Multiplex Constructio Linea ex Data Tangentium Conditione, published in Acta Eruditorum, Leipzig, pp. 385392. German translation by G. Kowalewski, Leibniz über die Analysis des Unendlichen, No. 162 of Ostwalds Klassiker (1908), pp. 24–34.Google Scholar
Mandelbrote, S. (2001), Footprints of the Lion, Cambridge University Library.Google Scholar
Newton, I. (1684), several manuscripts preparing the Principia, preserved in Cambridge University Library, in particular manuscript Add. 39657a (1684).Google Scholar
Newton, I. (1687), Philosophiae Naturalis Principia Mathematica, published in London. Russian translation with commentaries by A. N. Krylov (1936); reprinted (1989).CrossRefGoogle Scholar
Newton, I. (1713), Philosophiae Naturalis Principia Mathematica, 2nd edn.Google Scholar
Ptolemy, C. (~ AD 150), ᾑ μεγάλη σύνταξις (= Great Collection = Almagest = Al μεγίστη). Latin translation by G. Peurbach and J. Regiomontanus, Epitoma Almagesti per Magistrum Georgium de Peurbach et eius Discipulum Magistrum Jo. de Künigsperg…, completed 1462, printed 1496.Google Scholar
Radelet-de Grave, P. and Villaggio, P., eds (2007), Die Werke von Johann I und Nicolaus II Bernoulli, Birkhäuser.Google Scholar
Russell, B. (1931), The Scientific Outlook, Allen & Unwin.Google Scholar
Tournès, D. (2009), La Construction Tractionnelle des Equations Différentielles, Collection Sciences dans l'Histoire, Albert Blanchard, Paris.Google Scholar
Truesdell, C. (1968), Essays in the History of Mechanics, Springer.CrossRefGoogle Scholar
Whiteside, D. T., ed. (2008), The Mathematical Papers of Isaac Newton, Cambridge University Press.Google Scholar