Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-10T16:03:47.725Z Has data issue: false hasContentIssue false

Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos

Published online by Cambridge University Press:  25 June 2014

Paula F.B. Araújo-Lemos
Affiliation:
Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA), Rua Euripedes Tavares, 210, Tambiá, CEP 58013–200, João Pessoa-PB, Brasil.
Leopoldo M. Freitas Neto
Affiliation:
Laboratório de Biotécnicas Aplicadas a Reprodução Animal, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900, Recife-PE, Brasil.
Marcelo T. Moura
Affiliation:
Laboratório de Biotécnicas Aplicadas a Reprodução Animal, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900, Recife-PE, Brasil.
Janaína V. Melo
Affiliation:
Centro de Tecnologias Estratégicas do Nordeste (CETENE), Rua Prof. Luiz Freire nº 01, Cidade Universitária, CEP 50740–540, Recife-PE, Brasil.
Paulo F. Lima
Affiliation:
Laboratório de Biotécnicas Aplicadas a Reprodução Animal, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900, Recife-PE, Brasil.
Marcos A.L. Oliveira*
Affiliation:
Laboratório de Biotécnicas Aplicadas a Reprodução Animal, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900, Recife-PE, Brasil.
*
All correspondence to: Marcos A.L. de Oliveira. Laboratório de Biotécnicas Aplicadas a Reprodução Animal, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900, Recife-PE, Brasil. e-mail: maloufrpe@uol.com.br

Summary

The experiment aimed to compare conventional freezing and different vitrification protocols for cryopreservation of caprine embryos at morphological, ultrastructural, and functional levels. Caprine embryos produced in vivo were allocated randomly to three groups: (1) conventional freezing with ethylene glycol (EG); (2) dimethyl sulfoxide + EG (DMSO/EG) vitrification; and (3) dimethylformamide + EG (DMF/EG) vitrification. All groups were scored for cell viability (propidium iodide staining and ultrastructural levels) and re-expansion rate after thawing or warming. Embryos subjected to DMSO/EG vitrification showed higher cell viability (73.33%), compared with DMF/EG vitrification and conventional freezing group embryos (40.00 and 66.66%, respectively). The ultrastructural study revealed that vitrified embryos had greater preservation of cellular structure than embryos from conventional freezing with EG. DMSO/EG vitrification resulted in higher rates of re-expansion in vitro (47.36%) than DMF/EG vitrification (31.58%), and conventional freezing (25.00%). In conclusion, caprine embryos produced in vivo are better cryopreserved after vitrification than conventional freezing, therefore we conclude that DMSO/EG vitrification is the most effective protocol for cryopreservation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Yacoub, A.N., Gauly, M. & Holtz, W. (2010). Open pulled straw vitrification of goat embryos at various stages of development. Theriogenology 73, 1018–23.CrossRefGoogle ScholarPubMed
Alvarenga, M.A., Papa, F.O., Landim-Alvarenga, F.C. & Medeiros, A.S. (2005). Amides as cryoprotectants for freezing stallion semen: a review. Anim. Reprod. Sci. 89, 105–13.CrossRefGoogle ScholarPubMed
Bezerra, F.S., Castelo, T.S., Alves, H.M., Oliveira, I.R., Lima, G.L., Peixoto, G.C., Bezerra, A.C. & Silva, A.R. (2011). Objective assessment of the cryoprotective effects of dimethylformamide for freezing goat semen. Cryobiology 63, 263–6.CrossRefGoogle ScholarPubMed
Bilton, R.J. & Moore, N.W. (1976). In vitro culture, storage and transfer of goat embryos. Aust. J. Biol. Sci. 29, 125–9.CrossRefGoogle ScholarPubMed
Castro, S.V., de Carvalho, A.A., da Silva, C.M., Faustino, L.R., Campello, C.C., Lucci, C.M., Báo, S.N., de Figueiredo, J.R. & Rodrigues, A.P. (2011). Freezing solution containing dimethylsulfoxide and fetal calf serum maintains survival and ultrastructure of goat preantral follicles after cryopreservation and in vitro culture of ovarian tissue. Cell Tissue Res. 346, 283–92.CrossRefGoogle ScholarPubMed
Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J.P. (1999). In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–91.CrossRefGoogle ScholarPubMed
Chen, S.L. & Tian, , , Y.S. (2005). Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification. Theriogenology 63, 1207–19.CrossRefGoogle ScholarPubMed
Cognié, Y., Baril, G., Poulin, N. & Mermillod, P. (2003). Current status of embryos technologies in sheep and goat. Theriogenology 59, 171–88.CrossRefGoogle ScholarPubMed
Dike, I.P. (2009). Efficiency of intracellular cryoprotectants on the cryopreservation of sheep oocytes by controlled slow freezing and vitrification techniques. J. Cell Anim. Biol. 3, 44–9.Google Scholar
Dobrinsky, J.R. (2002). Advancements in cryopreservation of domestic animal embryos. Theriogenology 57, 285302.CrossRefGoogle ScholarPubMed
El-Gayar, M. & Holtz, W. (2001). Technical note: Vitrification of goat embryos by the open pulled-straw method. J. Anim. Sci. 79, 2436–8.CrossRefGoogle ScholarPubMed
Gibb, Z., Morris, L.H., Maxwell, W.M. & Grupen, C.G. (2013). Dimethyl formamide improves the postthaw characteristics of sex-sorted and nonsorted stallion sperm. Theriogenology 79, 1027–33.CrossRefGoogle ScholarPubMed
Guignot, F., Bouttier, A., Baril, G., Salvetti, P., Pignon, P., Beckers, J.F., Touzé, J.L., Cognié, J., Traldi, A.S., Cognié, Y. & Mermillod, P. (2006). Improved vitrification method allowing direct transfer of goat embryos. Theriogenology 66, 1004–11.CrossRefGoogle ScholarPubMed
Hong, Q.H., Tian, S.J., Zhu, S.E., Feng, J.Z., Yan, C.L., Zhao, X.M., Liu, G.S. & Zheng, S.M. (2007). Vitrification of Boer goat morulae and early blastocysts by straw and open-pulled straw method. Reprod. Domest. Anim. 42, 34–8.CrossRefGoogle ScholarPubMed
Kasai, M., Niwa, K. & Iritani, A. (1981). Effects of various cryoprotective agents on the survival of unfrozen and frozen mouse embryos. J. Reprod. Fertil. 63, 175–80.CrossRefGoogle ScholarPubMed
Kuleshova, L.L, Shaw, J.M. & Trounson, A.O. (2001). Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. Cryobiology 43, 2131.CrossRefGoogle ScholarPubMed
Loutradi, K.E., Kolibianakis, E.M., Venetis, C.A., Papanikolaou, E.G., Pados, G., Bontis, I. & Tarlatzis, B.C. (2008). Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil. Steril. 90, 186–93.CrossRefGoogle ScholarPubMed
Lukaszewicz, E. (2002). An effective method for freezing White Italian gander semen. Theriogenology 58, 1927.CrossRefGoogle ScholarPubMed
Malo, C., Gil, L., Cano, R., Martínez, F., García, A. & Jerez, R.A. (2012). Dimethylformamide is not better than glycerol for cryopreservation of boar semen. Andrologia 44(Suppl. 1), 605–10.CrossRefGoogle Scholar
Massip, A. (1989). Some significant steps in the cryopreservation of mammalian embryos with a note on a vitrification procedure. Anim. Reprod. Sci. 19, 117–29.CrossRefGoogle Scholar
Massip, A. (2001). Cryopreservation of embryos of farm animals. Reprod. Domest. Anim. 36, 4955.CrossRefGoogle ScholarPubMed
Morató, R., Romaguera, R., Izquierdo, D., Paramio, M.T. & Mogas, T. (2011). Vitrification of in vitro produced goat blastocysts: effects of oocyte donor age and development stage. Cryobiology. 63, 240–4.CrossRefGoogle ScholarPubMed
Moustacas, V.S., Cruz, B.C., Varago, F C., Miranda, D.A., Lage, P.G. & Henry, M. (2011). Extenders containing dimethylformamide associated or not with glycerol are ineffective for ovine sperm cryopreservation. Reprod. Domest. Anim. 46, 924–5.CrossRefGoogle ScholarPubMed
Polge, C. (1951). Functional survival of fowl spermatozoa after freezing at –79°C. Nature 167, 949–50.CrossRefGoogle Scholar
Stringfellow, D.A. & Seidel, S.M. (1998). Manual of the International Embryo Transfer Society: a procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures, 3rd edn.Savory III, USA: International Embryo Transfer Society.Google Scholar
Vajta, G. (2000). Vitrification of oocytes and embryos of domestic animals. Anim. Reprod. Sci. 60–61, 357–64.CrossRefGoogle ScholarPubMed
Vajta, G. & Kuwayama, M. (2006). Improving cryopreservation systems. Theriogenology 65, 236–44.CrossRefGoogle ScholarPubMed
Whittingham, D.G., Leibo, S.P. & Mazur, P. (1972). Survival of mouse embryos frozen to –196°C and –296°C. Science 178, 411–4.CrossRefGoogle Scholar
Wilmut, I. (1972). The effect of cooling rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci. II 11, 1071–9.CrossRefGoogle ScholarPubMed