Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T01:48:40.376Z Has data issue: false hasContentIssue false

Role of Mesoporous TiO2 Surface States and Metal Oxide Treatment on Charge Transport of Dye Sensitized Solar Cells

Published online by Cambridge University Press:  27 April 2011

Mariyappan Shanmugam*
Affiliation:
Department of Electrical Engineering and Computer ScienceSouth Dakota State University, Brookings, SD-57007, USA
Braden Bills
Affiliation:
Department of Electrical Engineering and Computer ScienceSouth Dakota State University, Brookings, SD-57007, USA
Mahdi Farrokh Baroughi
Affiliation:
Department of Electrical Engineering and Computer ScienceSouth Dakota State University, Brookings, SD-57007, USA
*
Corresponding author: Tel.: +1(605)651-1804, Fax: +1(605)688-4401 E Mail: Mariyappan.Shanmugam@sdstate.edu
Get access

Abstract

Photovoltaic performance of dye sensitized solar cell (DSSC) was enhanced by 19 and 69 % compared to untreated DSSC by treating the nanoporous titanium dioxide (TiO2) by ultra thin Aluminum oxide (Al2O3) and Hafnium oxide (HfO2) grown by atomic layer deposition method. Activation energy of dark current, obtained from the temperature dependent current-voltage (I-V-T), of the untreated DSSC was 1.03 eV on the other hand the DSSCs with Al2O3 and HfO2 surface treatment showed 1.27 and 1.31 eV respectively. A significant change in the activation energy of dark current, over 0.24 eV for Al2O3 treatment and 0.28 eV in case of HfO2 treatment, suggest that density and activity of surface states on nanoporous TiO2 was suppressed by ALD grown metal oxides to result improved photovoltaic performance. Further the enhanced DSSC performance was confirmed by external quantum efficiency measurement in the wavelength range of 350-750 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] O'Regan, B., Gratzel, M., Nature 353, 737 (1991).Google Scholar
[2] Durr, M., Schmid, A., Obermaier, M., Rosselli, S., Yasuda, A. and Nelles, G., Nature Materials 4, 607 (2005).Google Scholar
[3] Durrant, J. R. and Haque, S. A., Nature Materials 4, 362 (2003).Google Scholar
[4] Gratzel, M., C. R. Chimie 9, 578 (2006).Google Scholar
[5] Nusbaumer, H., Zakeeruddin, S. M., Moser, J. E., and Gratzel, M., Chem. Eur. J. 9, 3756 (2003)Google Scholar
[6] Cahen, D., Hodes, G., Gratzel, M., Guillemoles, J. Franois, and Riess, I., J. Phys. Chem. B, 104, 2053 (2000).Google Scholar
[7] Sakaguchi, S., Ueki, H., Kato, T., Kado, T., Shiratuchi, R., Takashima, W., Kaneto, K., Hayase, S., Journal of Photochemistry and Photobiology A: Chemistry 164, 117 (2004).Google Scholar
[8] Gregg, B. A., Pichot, F., Ferrere, S., and Fields, C. L. J. Phys. Chem. B 105, 1422 (2001).Google Scholar
[9] Yong, V., Ho, S. Tiong, and Chang, R. P. H., Appl. Phys. Lett. 92, 143506 (2008).Google Scholar
[10] Liberatore, M., Burtone, L., Brown, T. M., Reale, A., Carlo, A. Di, Decker, F., Caramori, S., and Bignozzi, C. A., Appl. Phys. Lett. 94, 173113 (2009).Google Scholar
[11] Kay, A. and Gratzel, M., Chem. Mater., 14, 2930 (2002).Google Scholar
[12] 14Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T. and Durrant, J. R., Chem. Commun., 14, 1464 (2002).Google Scholar
[13] Sommeling, P. M., O'Regan, B. C., Haswell, R. R., Smit, H. J. P., Bakker, N. J., Smits, J. J. T., Kroon, J. M., and Roosmalen, J. A. M. van, J. Phys. Chem. B 110, 19191 (2006).Google Scholar
[14] Kim, Y., Yoo, B. J., Vittal, R., Lee, Y., Park, N.G., Kim, K.J., Journal of Power Sources 175, 914 (2008).Google Scholar
[15] Lenzmann, F., Nanu, M., Kijatkina, O., Belaidi, A., Thin Solid Films 451–452, 639 (2004).Google Scholar
[16] Shanmugam, M., Baroughi, M. Farrokh and Galipeau, D., Electronics Letters 45, 648 (2009).Google Scholar
[17] Noma, Y., Kado, T., Ogata, D., Hara, Y. and Hayase, S., Japanese Journal of Applied Physics 47, 505 (2008).Google Scholar