Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T09:35:27.373Z Has data issue: false hasContentIssue false

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

Published online by Cambridge University Press:  18 March 2013

Nikhil J. Fernandes
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
Hilmar Koerner
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Richard A. Vaia*
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
*
Address all correspondence to Richard A. Vaia at richard.vaia@wpafb.af.mil
Get access

Abstract

Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create “hairy nanoparticles” (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle–matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure–performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mezzenga, R. and Ruokolainen, J.: Nanocomposites: nanoparticles in the right place. Nat. Mater. 8, 926928 (2009).CrossRefGoogle ScholarPubMed
2.Crosby, A.J. and Lee, J.: Polymer nanocomposites: the ‘nano’ effect on mechanical properties. Polym. Rev. 47, 217229 (2007).CrossRefGoogle Scholar
3.Krishnamoorti, R. and Vaia, R.A.: Polymer nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 45, 32523256 (2007).CrossRefGoogle Scholar
4.Kumar, S.K. and Krishnamoorti, R.: Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 1, 3758 (2010).CrossRefGoogle ScholarPubMed
5.Winey, K.I. and Vaia, R.A.: Polymer nanocomposites. MRS Bull. 32, 314322 (2007).CrossRefGoogle Scholar
6.Vaia, R.A. and Maguire, J.F.: Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 27362751 (2007).CrossRefGoogle Scholar
7.Robbes, A.-S., Cousin, F., Meneau, F., Dalmas, F., Boué, F., and Jestin, J.: Nanocomposite materials with controlled anisotropic reinforcement triggered by magnetic self-assembly. Macromolecules 44, 88588865 (2011).CrossRefGoogle Scholar
8.Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., Van Horn, B., Guan, Z., Chen, G., and Krishnan, R.S.: General strategies for nanoparticle dispersion. Science 311, 17401743 (2006).CrossRefGoogle ScholarPubMed
9.van der Waarden, M.: Stabilization of carbon-black dispersions in hydrocarbons. J. Colloid Sci. 5, 317325 (1950).Google Scholar
10.Napper, D.H.. Polymeric Stabilization of Colloidal Dispersions (Academic Press, London, 1983).Google Scholar
11.Witten, T.A. and Pincus, P.A.: Colloid stabilization by long grafted polymers. Macromolecules 19, 25092513 (1986).CrossRefGoogle Scholar
12.Krishnamoorti, R.: Strategies for dispersing nanoparticles in polymers. MRS Bull. 32, 341347 (2007).Google Scholar
13.Fischer, S., Salcher, A., Kornowski, A., Weller, H., and Förster, S.: Completely miscible nanocomposites. Angew. Chem. Int. Ed. Engl. 50, 78117814 (2011).CrossRefGoogle ScholarPubMed
14.Akcora, P., Liu, H., Kumar, S.K., Moll, J., Li, Y., Benicewicz, B.C., Schadler, L.S., Acehan, D., Panagiotopoulos, A.Z., Pryamitsyn, V., Ganesan, V., Ilavsky, J., Thiyagarajan, P., Colby, R.H., and Douglas, J.F.: Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 8, 354359 (2009).CrossRefGoogle ScholarPubMed
15.Coppée, S., Gabriele, S., Jonas, A.M., Jestin, J., and Damman, P.: Influence of chain interdiffusion between immiscible polymers on dewetting dynamics. Soft Matter 7, 9951 (2011).CrossRefGoogle Scholar
16.IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught, A. D. and Wilkinson, A. (Blackwell Scientific Publications, Oxford, 1997).Google Scholar
17.Vlassopoulos, D. and Fytas, G.: From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles. In Advances in Polymer Science: High Solid Dispersions, edited by Cloitre, M. (Springer, 236, Berlin, Heidelberg, 2010), pp. 154.Google Scholar
18.Likos, C.N., Löwen, H., Watzlawek, M., Abbas, B., Jucknischke, O., Allgaier, J., and Richter, D.: Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 80, 44504453 (1998).CrossRefGoogle Scholar
19.Gohy, J.: Block Copolymer Micelles. In Block Copolymers II, edited by Abetz, V. (Springer-Verlag, 190, Berlin, 2005). pp. 65136.CrossRefGoogle Scholar
20.Osterman, N., Babič, D., Poberaj, I., Dobnikar, J., and Ziherl, P.: Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev.Lett. 99, 248301 (2007).CrossRefGoogle ScholarPubMed
21.Daoud, M. and Cotton, J.: Star shaped polymers : a model for the conformation and its concentration dependence. J. Phys. 43, 531538 (1982).Google Scholar
22.Dukes, D., Li, Y., Lewis, S., Benicewicz, B., Schadler, L., and Kumar, S.K.: Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43, 15641570 (2010).Google Scholar
23.Ohno, K., Morinaga, T., Takeno, S., Tsujii, Y., and Fukuda, T.: Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 40, 91439150 (2007).CrossRefGoogle Scholar
24.Milner, S.T., Witten, T.A., and Cates, M.E.: Theory of the grafted polymer brush. Macromolecules 21, 26102619 (1988).CrossRefGoogle Scholar
25.Wijmans, C.M. and Zhulina, E.B.: Polymer brushes at curved surfaces. Macromolecules 26, 72147224 (1993).CrossRefGoogle Scholar
26.Likos, C.N.: Effective interactions in soft condensed matter physics. Phys. Rep. 348, 267439 (2001).CrossRefGoogle Scholar
27.Watzlawek, M., Likos, C.N., and Löwen, H.: Phase diagram of star polymer solutions. Phys. Rev. Lett. 82, 52895292 (1999).CrossRefGoogle Scholar
28.Kim, J.U. and Matsen, M.W.: Interaction between polymer-grafted particles. Macromolecules 41, 44354443 (2008).Google Scholar
29.Goel, V., Pietrasik, J., Dong, H., Sharma, J., Matyjaszewski, K., and Krishnamoorti, R.: Structure of polymer tethered highly grafted nanoparticles. Macromolecules 44, 81298135 (2011).Google Scholar
30.Goel, V., Pietrasik, J., Matyjaszewski, K., and Krishnamoorti, R.: Linear viscoelasticity of spherical SiO2 nanoparticle-tethered poly(butyl acrylate) hybrids. Ind. Eng. Chem. Res. 49, 1198511990 (2010).CrossRefGoogle Scholar
31.Yu, H.-Y. and Koch, D.L.: Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir 26, 1680116811 (2010).Google Scholar
32.Chremos, A., Panagiotopoulos, A.Z., Yu, H.-Y., and Koch, D.L.: Structure of solvent-free grafted nanoparticles: molecular dynamics and density-functional theory. J. Chem. Phys. 135, 114901 (2011).CrossRefGoogle ScholarPubMed
33.Hong, B., Chremos, A., and Panagiotopoulos, A.Z.: Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles. J. Chem. Phys. 136, 204904 (2012).CrossRefGoogle ScholarPubMed
34.Chremos, A. and Panagiotopoulos, A.: Structural transitions of solvent-free oligomer-grafted nanoparticles. Phys. Rev. Lett. 107, 105503 (2011).Google Scholar
35.Bishop, K.J.M., Wilmer, C.E., Soh, S., and Grzybowski, B.A.: Nanoscale forces and their uses in self-assembly. Small 5, 16001630 (2009).CrossRefGoogle ScholarPubMed
36.Akcora, P., Kumar, S.K., Garci'a Sakai, V., Li, Y., Benicewicz, B.C., and Schadler, L.S.: Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43, 82758281 (2010).CrossRefGoogle Scholar
37.Akcora, P., Kumar, S.K., Moll, J., Lewis, S., Schadler, L.S., Li, Y., Benicewicz, B.C., Sandy, A., Narayanan, S., Ilavsky, J., Thiyagarajan, P., Colby, R.H., and Douglas, J.F.: Gel-like’ mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43, 10031010 (2010).Google Scholar
38.McEwan, M.E., Egorov, S.a., Ilavsky, J., Green, D.L., and Yang, Y.: Mechanical reinforcement of polymer nanocomposites: theory and ultra-small angle x-ray scattering (USAXS) studies. Soft Matter 7, 2725 (2011).CrossRefGoogle Scholar
39.Choi, J., Hui, C.M., Pietrasik, J., Dong, H., Matyjaszewski, K., and Bockstaller, M.R.: Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter 8, 4072 (2012).CrossRefGoogle Scholar
40.Agarwal, P., Chopra, M., and Archer, L.A.: Nanoparticle netpoints for shape-memory polymers. Angew. Chem. Int. Ed. Engl. 50, 86708673 (2011).CrossRefGoogle ScholarPubMed
41.Iyer, B.V.S., Salib, I.G., Yashin, V.V., Kowalewski, T., Matyjaszewski, K., and Balazs, A.C.: Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9, 109121 (2013). doi:10.1039/c2sm27121dCrossRefGoogle Scholar
42.Torquato, S., Hyun, S., and Donev, A.: Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89, 266601 (2002).Google Scholar
43.Guest, J.K. and Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43, 70287047 (2006).CrossRefGoogle Scholar
44.Hur, K., Hennig, R.G., Escobedo, F.A., and Wiesner, U.: Mesoscopic structure prediction of nanoparticle assembly and coassembly: theoretical foundation. J. Chem. Phys. 133, 194108 (2010).CrossRefGoogle ScholarPubMed
45.Shenhar, R., Norsten, T.B., and Rotello, V.M.: Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657669 (2005).Google Scholar
46.Lo, C.-T., Lee, B., Rago, N.L.D., Winans, R.E., and Thiyagarajan, P.: Strategy for better ordering in diblock copolymer based nanocomposites. Macromol. Rapid Commun. 28, 16071612 (2007).Google Scholar
47.Bockstaller, M.R., Mickiewicz, R.A., and Thomas, E.L.: Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 17, 13311349 (2005).Google Scholar
48.Zhu, X., Wang, L., Lin, J., and Zhang, L.: Ordered nanostructures self-assembled from block copolymer tethered nanoparticles. ACS Nano 4, 49794988 (2010).Google Scholar
49.Xu, G.-K., Feng, X.-Q., and Yu, S.-W.: Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites. Nano Res. 3, 356362 (2010).Google Scholar
50.Wojcik, M., Lewandowski, W., Matraszek, J., Mieczkowski, J., Borysiuk, J., Pociecha, D., and Gorecka, E.: Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 51675169 (2009).CrossRefGoogle ScholarPubMed
51.In, I., Jun, Y., Kim, Y.J., and Kim, S.Y.: Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. (Camb.) (6), 800801 (2005). doi:10.1039/b413510eCrossRefGoogle Scholar
52.He, J., Liu, Y., Babu, T., Wei, Z., and Nie, Z.: Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 134, 1134211345 (2012).Google Scholar
53.Guo, Y., Harirchian-Saei, S., Izumi, C.M.S., and Moffitt, M.G.: Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 5, 33093318 (2011).Google Scholar
54.Jayaraman, A. and Schweizer, K.S.: Effective interactions and self-assembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42, 84238434 (2009).CrossRefGoogle Scholar
55.Jayaraman, A. and Schweizer, K.S.: Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008).CrossRefGoogle ScholarPubMed
56.Jayaraman, A. and Schweizer, K.S.: Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles. Langmuir 24, 1111911130 (2008).Google Scholar
57.Iacovella, C.R. and Glotzer, S.C.: Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 12061211 (2009).Google Scholar
58.Phillips, C.L., Iacovella, C.R., and Glotzer, S.C.: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 1693 (2010).CrossRefGoogle Scholar
59.Wang, B., Li, B., Dong, B., Zhao, B., and Li, C.Y.: Homo- and hetero-particle clusters formed by Janus nanoparticles with bicompartment polymer brushes. Macromolecules 43, 92349238 (2010).CrossRefGoogle Scholar
60.Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl. 48, 60103 (2009).CrossRefGoogle ScholarPubMed
61.Guerrero-Martínez, A., Barbosa, S., Pastoriza-Santos, I., and Liz-Marzán, L.M.: Nanostars shine bright for you. Curr. Opin. Colloid Interface Sci. 16, 118127 (2011).Google Scholar
62.Wang, C., Xu, C., Zeng, H., and Sun, S.: Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. Weinheim 21, 30453052 (2009).CrossRefGoogle Scholar
63.Glotzer, S.C., Horsch, M.A., Iacovella, C.R., Zhang, Z., Chan, E.R., and Zhang, X.: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287295 (2005).Google Scholar
64.Horsch, M.A., Lamm, M.H., and Glotzer, S.C.: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 13411346 (2003).Google Scholar
65.Glotzer, S.C. and Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557562 (2007).Google Scholar
66.Nykypanchuk, D., Maye, M.M., van der Lelie, D., and Gang, O.: DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549552 (2008).Google Scholar
67.Slocik, J.M., Tam, F., Halas, N.J., and Naik, R.R.: Peptide-assembled optically responsive nanoparticle complexes. Nano Lett. 7, 10541058 (2007).CrossRefGoogle ScholarPubMed
68.Glotzer, S.C.: Self-assembly of patchy particles. Nano Lett. 4, 14071413 (2004).Google Scholar
69.Malescio, G. and Pellicane, G.: Stripe phases from isotropic repulsive interactions. Nat. Mater. 2, 97100 (2003).Google Scholar
70.Likos, C.N.: Soft matter with soft particles. Soft Matter 2, 478 (2006).CrossRefGoogle ScholarPubMed
71.Kandar, A.K., Srivastava, S., Basu, J.K., Mukhopadhyay, M.K., Seifert, S., and Narayanan, S.: Unusual dynamical arrest in polymer grafted nanoparticles. J. Chem. Phys. 130, 121102 (2009).Google Scholar
72.Agarwal, P., Srivastava, S., and Archer, L.: Thermal jamming of a colloidal glass. Phys. Rev. Lett. 107, 268302 (2011).Google Scholar
73.Savin, D.A., Pyun, J., Patterson, G.D., Kowalewski, T., and Matyjaszewski, K.: Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J. Polym. Sci. Part B: Polym. Phys. 40, 26672676 (2002).Google Scholar
74.Tchoul, M.N., Fillery, S.P., Koerner, H., Drummy, L.F., Oyerokun, F.T., Mirau, P.A., Durstock, M.F., and Vaia, R.A.: Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 17491759 (2010).CrossRefGoogle Scholar
75.Agarwal, P., Qi, H., and Archer, L.A.: The ages in a self-suspended nanoparticle liquid. Nano Lett. 10, 111115 (2010).Google Scholar
76.Rodriguez, R., Herrera, R., Archer, L.A., and Giannelis, E.P.: Nanoscale ionic materials. Adv. Mater. 20, 43534358 (2008).Google Scholar
77.Bourlinos, A.B., Herrera, R., Chalkias, N., Jiang, D.D., Zhang, Q., Archer, L.A., and Giannelis, E.P.: Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater. 17, 234237 (2005).CrossRefGoogle Scholar
78.Pearson, D.S. and Helfand, E.: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888895 (1984).Google Scholar
79.Chremos, A., Panagiotopoulos, A.Z., and Koch, D.L.: Dynamics of solvent-free grafted nanoparticles. J. Chem. Phys. 136, 044902 (2012).CrossRefGoogle ScholarPubMed
80.Bourlinos, A.B., Giannelis, E.P., Zhang, Q., Archer, L.A., Floudas, G., and Fytas, G.: Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur. Phys. J. E Soft Matter 20, 109117 (2006).CrossRefGoogle ScholarPubMed
81.Bourlinos, A.B., Ray Chowdhury, S., Herrera, R., Jiang, D.D., Zhang, Q., Archer, L.A., and Giannelis, E.P.: Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv. Funct. Mater. 15, 12851290 (2005).Google Scholar
82.Rodriguez, R., Herrera, R., Bourlinos, A.B., Li, R., Amassian, A., Archer, L.A., and Giannelis, E.P.: The synthesis and properties of nanoscale ionic materials. Appl. Organometal. Chemis. 24, 581589 (2010).Google Scholar
83.Hong, B., Chremos, A., and Panagiotopoulos, A.Z.: Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discus. 154, 29 (2012).Google Scholar
84.Jespersen, M.L., Mirau, P.A., von Meerwall, E., Vaia, R.A., Rodriguez, R., and Giannelis, E.P.: Canopy dynamics in nanoscale ionic materials. ACS Nano 4, 37353742 (2010).Google Scholar
85.Cui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., and Pan, Y.: Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat. Nanotechnol. 3, 3241 (2009).Google Scholar
86.Masala, O. and Seshadri, R.: Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res. 34, 4181 (2004).CrossRefGoogle Scholar
87.Liu, G., Yan, X., Lu, Z., Curda, S.a., and Lal, J.: One-pot synthesis of block copolymer coated cobalt nanocrystals. Chem. Mater. 17, 49854991 (2005).Google Scholar
88.Zhang, Y., Luo, S., and Liu, S.: Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach. Macromolecules 38, 98139820 (2005).Google Scholar
89.Subbiah, R., Veerapandian, M., and Yun, K.S.: Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 45594577 (2010).CrossRefGoogle ScholarPubMed
90.Neouze, M.-A. and Schubert, U.: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Chem. – Chem. Monthly 139, 183195 (2008).CrossRefGoogle Scholar
91.Grubbs, R.B.: Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 47, 197215 (2007).Google Scholar
92.Wuelfing, W.P., Gross, S.M., Miles, D.T., and Murray, R.W.: Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 120, 1269612697 (1998).Google Scholar
93.Corbierre, M.K., Cameron, N.S., and Lennox, R.B.: Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20, 28672873 (2004).CrossRefGoogle ScholarPubMed
94.Zheng, Y., Zhang, J., Lan, L., Yu, P., Rodriguez, R., Herrera, R., Wang, D., and Giannelis, E.P.: Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chemphyschem 11, 6164 (2010).Google Scholar
95.Mehdizadeh Taheri, S., Fischer, S., and Förster, S.: Routes to nanoparticle-polymer superlattices. Polymers 3, 662673 (2011).Google Scholar
96.Penn, L.S., Huang, H., Sindkhedkar, M.D., Rankin, S.E., Chittenden, K., Quirk, R.P., Mathers, R.T., and Lee, Y.: Formation of tethered nanolayers: three regimes of kinetics. Macromolecules 35, 70547066 (2002).Google Scholar
97.Oyerokun, F.T. and Vaia, R.A.: Distribution in the grafting density of end-functionalized polymer chains adsorbed onto nanoparticle surfaces. Macromolecules 45, 76497659 (2012).Google Scholar
98.Hübner, E., Allgaier, J., Meyer, M., Stellbrink, J., Pyckhout-Hintzen, W., and Richter:, D.Synthesis of polymer/silica hybrid nanoparticles using anionic polymerization techniques. Macromolecules 43, 856867 (2010).CrossRefGoogle Scholar
99.Papke, B.L., Bartley, L.S., and Migdal, C.A.: Adsorption of poly(isobutenyl)succinimide dispersants onto calcium alkylarylsulfonate colloidal dispersions in hydrocarbon media. Langmuir 7, 26142619 (1991).Google Scholar
100.Fernandes, N., Dallas, P., Rodriguez, R., Bourlinos, A.B., Georgakilas, V., and Giannelis, E.P.: Fullerol ionic fluids. Nanoscale 2, 16531656 (2010).Google Scholar
101.Fernandes, N.J., Akbarzadeh, J., Peterlik, H., and Giannelis, E.P.: Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids. ACS Nano 7, 12651271 (2013). doi:10.1021/nn304735rGoogle Scholar
102.Radhakrishnan, B., Ranjan, R., and Brittain, W.J.: Surface initiated polymerizations from silica nanoparticles. Soft Matter 2, 386 (2006).Google Scholar
103.Advincula, R.C.: Surface initiated polymerization from nanoparticle surfaces. J. Dispers. Sci. Technol. 24, 343361 (2003).Google Scholar
104.Pyun, J. and Matyjaszewski, K.: Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living' radical polymerization. Chem. Mater. 13, 34363448 (2001).CrossRefGoogle Scholar
105.Zhou, Q., Wang, S., Fan, X., Advincula, R., and Mays, J.: Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18, 33243331 (2002).CrossRefGoogle Scholar
106.Jordan, R., West, N., Ulman, A., Chou, Y.-M., and Nuyken, O.: Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 34, 16061611 (2001).CrossRefGoogle Scholar
107.Min, K., Gao, H., Yoon, J.A., Wu, W., Kowalewski, T., and Matyjaszewski, K.: One-pot synthesis of hairy nanoparticles by emulsion ATRP. Macromolecules 42, 15971603 (2009).Google Scholar
108.Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., and Kusumo, A.: Grafting from surfaces for ‘everyone’: ARGET ATRP in the presence of air. Langmuir 23, 45284531 (2007).Google Scholar
109.Matyjaszewski, K. and Tsarevsky, N.V: Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276288 (2009).CrossRefGoogle ScholarPubMed
110.Stenzel, M.H.: Hairy Core-Shell Nanoparticles via RAFT: where are the opportunities and where are the problems and challenges?. Macromol. Rapid Commun. 30, 16031624 (2009).Google Scholar
111.Li, C. and Benicewicz, B.C.: Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition − fragmentation chain transfer polymerization. Macromolecules 38, 59295936 (2005).CrossRefGoogle Scholar
112.Li, Y. and Benicewicz, B.C.: Functionalization of silica nanoparticles via the combination of surface-initiated raft polymerization and click reactions. Macromolecules 41, 79867992 (2008).Google Scholar
113.Siegwart, D.J., Whitehead, K.A., Nuhn, L., Sahay, G., Cheng, H., Jiang, S., Ma, M., Lytton-Jean, A., Vegas, A., Fenton, P., Levins, C.G., Love, K.T., Lee, H., Cortez, C., Collins, S.P., Li, Y.F., Jang, J., Querbes, W., Zurenko, C., Novobrantseva, T., Langer, R., and Anderson, D.G.: Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. USA 108, 1299613001 (2011).Google Scholar
114.Sanchez, C., Julián, B., Belleville, P., and Popall, M.: Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559 (2005).Google Scholar
115.Trikeriotis, M., Bae, W.J., Schwartz, E., Krysak, M., Lafferty, N., Xie, P., Smith, B., Zimmerman, P.A., Ober, C.K., and Giannelis, E.P.: Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. In Proceedings of SPIE, Rieger, M.L., Thiele, J. ed, 76390E-76390E-10 (Society of Photo-Optical Instrumentation Engineers DO - 10.1117/12.846672, 2010), pp. 7639.Google Scholar
116.Kotov, N.A.: Ordered layered assemblies of nanoparticles. MRS Bull. 26, 992997 (2001).CrossRefGoogle Scholar
117.Kim, Y., Kim, D., Kwon, I., Jung, H.W., and Cho, J.: Solvent-free nanoparticle fluids with highly collective functionalities for layer-by-layer assembly. J. Mater. Chem. 22, 11488 (2012).Google Scholar
118.Zhang, J., Li, Q., Di, X., Liu, Z., and Xu, G.: Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films. Nanotechnology 19, 435606 (2008).Google Scholar
119.Sakai, N., Prasad, G.K., Ebina, Y., Takada, K., and Sasaki, T.: Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light. Chem. Mater. 18, 35963598 (2006).Google Scholar
120.Mauter, M.S., Wang, Y., Okemgbo, K.C., Osuji, C.O., Giannelis, E.P., and Elimelech, M.: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3, 28612868 (2011).Google Scholar
121.Tiraferri, A., Kang, Y., Giannelis, E.P., and Elimelech, M.: Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environ. Sci. Technol. 46, 1113511144 (2012).Google Scholar
122.Tiraferri, A., Kang, Y., Giannelis, E.P., and Elimelech, M.: Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interfaces 4, 50445053 (2012).Google Scholar
123.Fang, J., Kelarakis, A., Estevez, L., Wang, Y., Rodriguez, R., and Giannelis, E.P.: Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process. J. Mater. Chem. 20, 1651 (2010).CrossRefGoogle Scholar
124.Guldi, D.M., Zilbermann, I., Anderson, G., Kotov, N.A., Tagmatarchis, N., and Prato, M.: Nanosized inorganic/organic composites for solar energy conversion. J. Mater. Chem. 15, 114 (2005).Google Scholar
125.Labastide, J.A., Baghgar, M., Dujovne, I., Yang, Y., Dinsmore, A.D., Sumpter, B.G., Venkataraman, D., and Barnes, M.D.: Polymer nanoparticle superlattices for organic photovoltaic applications. J. Phys. Chem. Lett. 2, 30853091 (2011).Google Scholar
126.Lee, D.Y., Pham, J.T., Lawrence, J., Lee, C.H., Parkos, C., Emrick, T., and Crosby, A.J.: Macroscopic nanoparticle ribbons and fabrics. Adv. Mater. Weinheim (2012). doi:10.1002/adma.201203719Google Scholar
127.Kim, H.S., Lee, C.H., Sudeep, P.K., Emrick, T., and Crosby, A.J.: Nanoparticle stripes, grids, and ribbons produced by flow coating. Adv. Mater. Weinheim 22, 46004604 (2010).Google Scholar
128.Lin, K.-Y.A. and Park, A.-H.A.: Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials. Environ. Sci. Technol. 45, 66336639 (2011).CrossRefGoogle ScholarPubMed
129.Park, Y., Decatur, J., Lin, K.-Y.A., and Park, A.-H.A.: Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization. Phys. Chem. Chem. Phys. 13, 1811518122 (2011).Google Scholar
130.Calcagnile, P., Fragouli, D., Bayer, I.S., Anyfantis, G.C., Martiradonna, L., Cozzoli, P.D., Cingolani, R., and Athanassiou, A.: Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6, 54135419 (2012).Google Scholar
131.Shipway, A.N., Katz, E., and Willner, I.: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 1852 (2000).Google Scholar
132.Krasteva, N., Besnard, I., Guse, B., Bauer, R.E., Müllen, K., Yasuda, A., and Vossmeyer, T.: Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2, 551555 (2002).Google Scholar
133.Wang, L., Shi, X., Kariuki, N.N., Schadt, M., Wang, G.R., Rendeng, Q., Choi, J., Luo, J., Lu, S., and Zhong, C.-J.: Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties. J. Am. Chem. Soc. 129, 21612170 (2007).Google Scholar
134.Sönnichsen, C., Reinhard, B.M., Liphardt, J., and Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741745 (2005).Google Scholar
135.Bhattacharjee, R.R., Li, R., Estevez, L., Smilgies, D.-M., Amassian, A., and Giannelis, E.P.: A plasmonic fluid with dynamically tunable optical properties. J. Mater. Chem. 19, 8728 (2009).Google Scholar
136.Vossmeyer, T., Stolte, C., Ijeh, M., Kornowski, A., and Weller, H.: Networked gold-nanoparticle coatings on polyethylene: charge transport and strain sensitivity. Adv. Funct. Mater. 18, 16111616 (2008).Google Scholar
137.Loh, K.J. and Chang, D.: Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 46, 228237 (2010).CrossRefGoogle Scholar
138.Lu, Y., Liu, G.L., and Lee, L.P.: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5, 59 (2005).Google Scholar
139.Fabregat, V., Izquierdo, M.A., Burguete, M.I., Galindo, F., and Luis, S.V.: Quantum dot–polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorg. Chim. Acta 381, 212217 (2012).Google Scholar
140.Kim, D. and Archer, L.A.: Nanoscale organic-inorganic hybrid lubricants. Langmuir 27, 30833094 (2011).Google Scholar
141.Nomura, A., Okayasu, K., Ohno, K., Fukuda, T., and Tsujii, Y.: Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44, 50135019 (2011).Google Scholar
142.Voevodin, A.A., Vaia, R.A., Patton, S.T., Diamanti, S., Pender, M., Yoonessi, M., Brubaker, J., Hu, J.-J., Sanders, J.H., Phillips, B.S., and MacCuspie, R.I.: Nanoparticle-wetted surfaces for relays and energy transmission contacts. Small 3, 19571963 (2007).Google Scholar
143.Patton, S.T., Voevodin, A.A., Vaia, R.A., Pender, M., Diamanti, S.J., and Phillips, B.: Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J. Microelectromech. Syst. 17, 741746 (2008).Google Scholar
144.Nugent, J.L., Moganty, S.S., and Archer, L.A.: Nanoscale organic hybrid electrolytes. Adv. Mater. Weinheim 22, 36773680 (2010).Google Scholar
145.Moganty, S.S., Jayaprakash, N., Nugent, J.L., Shen, J., and Archer, L.A.: Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew. Chem. 122, 93449347 (2010).Google Scholar
146.Nambiar, S. and Yeow, J.T.W.: Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 57175726 (2012).Google Scholar
147.Ohno, K., Morinaga, T., Takeno, S., Tsujii, Y., and Fukuda, T.: Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules 39, 12451249 (2006).Google Scholar
148.Centeno, E. and Cassagne, D.: Graded photonic crystals. Opt. Lett. 30, 22782280 (2005).CrossRefGoogle ScholarPubMed
149.Cheng, W., Wang, J., Jonas, U., Fytas, G., and Stefanou, N.: Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830836 (2006).Google Scholar
150.Penciu, R.S., Kriegs, H., Petekidis, G., Fytas, G., and Economou, E.N.: Phonons in colloidal systems. J. Chem. Phys. 118, 5224 (2003).Google Scholar
151.Tang, C., Bombalski, L., Kruk, M., Jaroniec, M., Matyjaszewski, K., and Kowalewski, T.: Nanoporous carbon films from ‘hairy’ polyacrylonitrile-grafted colloidal silica nanoparticles. Adv. Mater. 20, 15161522 (2008).Google Scholar