Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T13:33:21.282Z Has data issue: false hasContentIssue false

Design of multi-layered TiO2–Fe2O3 photoanodes for photoelectrochemical water splitting: patterning effects on photocurrent density

Published online by Cambridge University Press:  28 November 2016

Myeongwhun Pyeon
Affiliation:
Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
Meng Wang
Affiliation:
Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany State Key Laboratory of Multiphase Flow in Power Engineering, International Research Center for Renewable Energy, Xi'an Jiaotong University, Shaanxi 710049, China
Yakup Gönüllü
Affiliation:
Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
Ali Kaouk
Affiliation:
Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
Sara Jäckle
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Max-Planck-Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
Silke Christiansen
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Max-Planck-Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
Taejin Hwang
Affiliation:
Korea Institute of Industrial Technology (KITECH), 320 Techno sunhwan-ro, Yuga-myeon, Dalseong-gun, 711-880 Daegu, South Korea
KyoungIl Moon
Affiliation:
Heat Treatment R&D Group (Siheung Ppuri Technological Supporting Center), Korea Institute of Industrial Technology (KITECH), 113-5 Seohaean-ro, Siheung-si, 429-450 Gyeonggi-do, South Korea
Sanjay Mathur*
Affiliation:
Department of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
*
Address all correspondence to Sanjay Mathur at sanjay.mathur@uni-koeln.de
Get access

Abstract

We report the effect of patterning on photoelectrochemical (PEC) water-splitting performance. Oxide–oxide heterostructures based on horizontal and vertical heterojunctions were fabricated on transparent conductive oxide glass by sequential plasma enhanced chemical vapor deposition (PECVD) of individual metal oxide. Featured masks were employed to enable three-dimensional patternings of stripes and cross-bars structures formed by Fe2O3 and TiO2 layers. PEC measurement was carried out by a three-electrode cell. It was found that double layered TiO2//Fe2O3:FTO showed a decrease in PEC performance when compared with single Fe2O3:FTO layer, whereas triple-layered Fe2O3//TiO2//Fe2O3:FTO (both patterned and unpatterned samples) displayed enhanced photocurrent density. The results show that the existence of multiple phase boundaries does not always add up to PEC enhancement observed in single heterojunction.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Millet, P. and Grigoriev, S.: Chapter 2—water electrolysis technologies. In Renewable Hydrogen Technologies, edited by Diéguez, L.M.G.A.M. (Elsevier, Amsterdam, 2013), p. 19.CrossRefGoogle Scholar
2. Baykara, S.Z.: Experimental solar water thermolysis. Int. J. Hydrog. Energy 29, 1459 (2004).CrossRefGoogle Scholar
3. Armaroli, N. and Balzani, V.: The hydrogen issue. ChemSusChem 4, 21 (2011).CrossRefGoogle ScholarPubMed
4. Maeda, K. and Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655 (2010).CrossRefGoogle Scholar
5. Cesar, I., Sivula, K., Kay, A., Zboril, R., and Grätzel, M.: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009).CrossRefGoogle Scholar
6. Lin, Y., Yuan, G., Sheehan, S., Zhou, S., and Wang, D.: Hematite-based solar water splitting: challenges and opportunities. Energy Env. Sci. 4, 4862 (2011).CrossRefGoogle Scholar
7. Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3nanotube arrays. Chem. Mater. 21, 3048 (2009).CrossRefGoogle Scholar
8. Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).CrossRefGoogle Scholar
9. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999 (2006).CrossRefGoogle Scholar
10. Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 79, 2027 (1983).CrossRefGoogle Scholar
11. Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., and McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).CrossRefGoogle Scholar
12. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).CrossRefGoogle Scholar
13. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).CrossRefGoogle ScholarPubMed
14. Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).CrossRefGoogle ScholarPubMed
15. Yang, X., Liu, R., Du, C., Dai, P., Zheng, Z., and Wang, D.: Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 6, 12005 (2014).CrossRefGoogle ScholarPubMed
16. Liu, R., Zheng, Z., Spurgeon, J., and Yang, X.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504 (2014).CrossRefGoogle Scholar
17. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
18. Kim, B.-R., Oh, H.-J., Yun, K.-S., Jung, S.-C., Kang, W., and Kim, S.-J.: Effect of TiO2 supporting layer on Fe2O3 photoanode for efficient water splitting. Progr. Organ. Coat. 76, 1869 (2013).CrossRefGoogle Scholar
19. Wang, M., Pyeon, M., Gonullu, Y., Kaouk, A., Shen, S., Guo, L., and Mathur, S.: Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7, 10094 (2015).CrossRefGoogle ScholarPubMed
20. Mettenbörger, A., Gönüllü, Y., Fischer, T., Heisig, T., Sasinska, A., Maccato, C., Carraro, G., Sada, C., Barreca, D., Mayrhofer, L., Moseler, M., Held, A., and Mathur, S.: Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy 19, 415 (2016).CrossRefGoogle Scholar
21. Mettenbörger, A., Singh, T., Singh, A.P., Järvi, T.T., Moseler, M., Valldor, M., and Mathur, S.: Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production. Int. J. Hydrog Energy 39, 4828 (2014).CrossRefGoogle Scholar
22. Fu, Z., Jiang, T., Liu, Z., Wang, D., Wang, L., and Xie, T.: Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358 (2014).CrossRefGoogle Scholar
23. Lian, X., Yang, X., Liu, S., Xu, Y., Jiang, C., Chen, J., and Wang, R.: Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl. Surf. Sci. 258, 2307 (2012).CrossRefGoogle Scholar
24. Li, S., Zhang, P., Song, X., and Gao, L.: Ultrathin Ti-doped hematite photoanode by pyrolysis of ferrocene. Int. J. Hydrog. Energy 39, 14596 (2014).CrossRefGoogle Scholar
25. Fan, X., Fan, J., Hu, X., Liu, E., Kang, L., Tang, C., Ma, Y., Wu, H., and Li, Y.: Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 40, 15907 (2014).CrossRefGoogle Scholar
26. Khan, M.A., Woo, S.I., and Yang, O.B.: Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int. J. Hydrog. Energy 33, 5345 (2008).CrossRefGoogle Scholar
27. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S.-T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).CrossRefGoogle Scholar
28. de Faria, D.L.A., Venâncio Silva, S., and de Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873 (1997).3.0.CO;2-B>CrossRefGoogle Scholar
29. Pena-Flores, J., Palomec-Garfias, A., Marquez-Beltran, C., Sanchez-Mora, E., Gomez-Barojas, E., and Perez-Rodriguez, F.: Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies. Nanoscale Res. Lett. 9, 499 (2014).CrossRefGoogle ScholarPubMed
30. Katiyar, R.S., Dawson, P., Hargreave, M.M., and Wilkinson, G.R.: Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO. J. Phys. C: Solid State Phys. 4, 2421 (1971).CrossRefGoogle Scholar
31. Bersani, D., Lottici, P., and Montenero, A.: Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
32. Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).CrossRefGoogle ScholarPubMed
33. van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Slooff, L.H., van Gennip, W.J.H., Jonkheijm, P., and Janssen, R.A.J.: Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15, 118 (2003).CrossRefGoogle Scholar
34. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
35. Chiang, C.-Y., Aroh, K., Franson, N., Satsangi, V.R., Dass, S., and Ehrman, S.: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Photoelectrochemical study. Int. J. Hydrog. Energy 36, 15519 (2011).CrossRefGoogle Scholar
36. Kumari, S., Singh, A.P., Sonal, , Deva, D., Shrivastav, R., Dass, S., and Satsangi, V.R.: Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int. J. Hydrog. Energy 35, 3985 (2010).CrossRefGoogle Scholar
37. Mariño-Otero, T., Oliver-Tolentino, M.A., Aguilar-Frutis, M.A., Contreras-Martínez, G., Pérez-Cappe, E., and Reguera, E.: Effect of thickness in hematite films produced by spray pyrolysis towards water photo-oxidation in neutral media. Int. J. Hydrog. Energy 40, 5831 (2015).CrossRefGoogle Scholar
38. Cao, J., Liu, L., Hashimoto, A., and Ye, J.: Hematite photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties. Electrochem. Commun. 48, 17 (2014).CrossRefGoogle Scholar
39. Lee, M.H., Park, J.H., Han, H.S., Song, H.J., Cho, I.S., Noh, J.H., and Hong, K.S.: Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. Int. J. Hydrog. Energy 39, 17501 (2014).CrossRefGoogle Scholar
40. Mao, S.S.: High throughput growth and characterization of thin film materials. J. Cryst. Growth 379, 123 (2013).CrossRefGoogle Scholar
41. Lee, W.J., Shinde, P.S., Go, G.H., and Doh, C.H.: Cathodic shift and improved photocurrent performance of cost-effective Fe2O3 photoanodes. Int. J. Hydrog. Energy 39, 5575 (2014).CrossRefGoogle Scholar
Supplementary material: Image

Pyeon supplementary material

Fig S1

Download Pyeon supplementary material(Image)
Image 360.5 KB
Supplementary material: Image

Pyeon supplementary material

Fig S2

Download Pyeon supplementary material(Image)
Image 308.9 KB
Supplementary material: File

Pyeon supplementary material

Pyeon supplementary material 1

Download Pyeon supplementary material(File)
File 498.7 KB