Skip to main content
Log in

Indentation creep of a Ti-based metallic glass

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the time-dependent plastic deformation behavior of Ti40Zr25Ni3Cu12Be20 bulk and ribbon metallic glass alloys was investigated using a nanoindentation technique at room temperature with the applied load ranging from 5 to 100 mN. The stress exponent n, defined as, has been derived as a measure of the creep resistance. It was found that the measured stress exponent increases rapidly with increasing indentation size, exhibiting a positive size effect. The size effect on the stress exponent n obtained from the bulk sample is more pronounced than that obtained from the ribbon sample. The deformation mechanism involved will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).

    Article  Google Scholar 

  4. A.R. Yavari, J.J. Lewandowski, and J. Eckert: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).

    Article  CAS  Google Scholar 

  5. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  7. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  8. J-J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).

    CAS  Google Scholar 

  9. M.J. Mayo and W.D. Nix: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  10. B.N. Lucas and W.C. Oliver: Indentation powder-law creep of high-purity Indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  11. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 (2004).

    Article  Google Scholar 

  12. W.B. Li and R. Warren: A model for nano-indentation creep. Acta Metall. 41, 3065 (1993).

    Article  CAS  Google Scholar 

  13. H. Li and A.H.W. Ngan: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).

    Article  CAS  Google Scholar 

  14. Z.Q. Cao and X. Zhang: Nanoindentation creep of plasma-enhanced chemical vapor deposited silicon oxide thin films. Scr. Mater. 56, 249 (2007).

    Article  CAS  Google Scholar 

  15. A. Concustell, J. Sort, A.L. Greer, and M.D. Baro: Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. Appl. Phys. Lett. 88, 171911 (2006).

    Article  Google Scholar 

  16. W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, and Y.Z. He: The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation. Mater. Sci. Eng., A 478, 371 (2008).

    Article  Google Scholar 

  17. B.C. Wei, T.H. Zhang, W.H. Li, D.M. Xing, L.C. Zhang, and Y.R. Wang: Indentation creep behavior in Ce-based bulk metallic glasses at room temperature. Mater. Trans. 46, 2959 (2005).

    Article  CAS  Google Scholar 

  18. W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, and P.K. Liaw: Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 24, 1 (2008).

    Article  Google Scholar 

  19. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  20. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna: Indentation of a power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).

    Article  Google Scholar 

  21. R.J. McCabe and M.E. Fine: Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metall. Mater. Trans. A 33, 1531 (2002).

    Article  Google Scholar 

  22. D. Turnbull and M.H. Cohen: On the free-volume model of the liquid-glass transition. J. Chem. Phys. 52, 3038 (1970).

    Article  Google Scholar 

  23. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  24. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  25. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  26. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  27. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  28. D.C.C. Lam and A.C.M. Chong: Model and experiments on strain gradient hardening in metallic glass. Mater. Sci. Eng., A 318, 313 (2001).

    Article  Google Scholar 

  29. F. Yang, K. Geng, P.K. Liaw, G. Fan, and H. Choo: Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321 (2007).

    Article  CAS  Google Scholar 

  30. H. Zhang, X. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater. 53, 3849 (2005).

    Article  CAS  Google Scholar 

  31. Y.J. Huang, J. Shen, and J.F. Sun: Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919 (2007).

    Article  Google Scholar 

  32. Y.L. Chiu: unpublished results.

  33. R. Goodall and T.W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.J., Chiu, Y.L., Shen, J. et al. Indentation creep of a Ti-based metallic glass. Journal of Materials Research 24, 993–997 (2009). https://doi.org/10.1557/jmr.2009.0106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0106

Navigation