Skip to main content
Log in

Finite element analysis of blister formation in laser-induced forward transfer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Blister-actuated laser-induced forward transfer (BA-LIFT) is a direct-write technique, which enables high-resolution printing of sensitive inks for electronic or biological applications. During BA-LIFT, a polymer laser-absorbing layer deforms into an enclosed blister and ejects ink from an adjacent donor film. In this work, we develop a finite element model to replicate and predict blister expansion dynamics during BA-LIFT. Model inputs consist of standard mechanical properties, strain-rate-dependent material parameters, and a parameter encapsulating the thermal and optical properties of the film. We present methods to determine these material parameters from experimental measurements. The simulated expansion dynamics are shown to be in good agreement with experimental measurements using two different polymer layer thicknesses. Finally, the ability to model high-fluence blister rupture is demonstrated through a strain-based failure approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1.
TABLE II
TABLE III
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J. Bohandy, B.F. Kim, and F.J. Adrian: Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538 (1986).

    Article  CAS  Google Scholar 

  2. A. Piqué, D.B. Chrisey, R.C.Y Auyeung, J. Fitz-Gerald, H.D. Wu, R.A. McGill, S. Lakeou, P.K. Wu, V. Nguyen, and M. Duignan: A novel laser transfer process for direct writing of electronic and sensor materials. Appl. Phys. A 69, 279 (1999).

    Article  Google Scholar 

  3. A. Piqué, C.B. Arnold, H. Kim, M. Ollinger, and T.E. Sutto: Rapid prototyping of micropower sources by laser direct-write. Appl. Phys. A 79, 783 (2004).

    Article  CAS  Google Scholar 

  4. C.B. Arnold, P. Serra, and A. Piqué: Laser direct-write techniques for printing of complex materials. MRS Bull. 32, 23 (2007).

    Article  CAS  Google Scholar 

  5. D.A. Willis, and V. Grosu: Microdroplet deposition by laser-induced forward transfer. Appl. Phys. Lett. 86, 244103–1 (2005).

    Article  CAS  Google Scholar 

  6. V. Schultze and M. Wagner: Blow-off of aluminium films. Appl. Phys., A Solids Surf. 53, 241 (1991).

    Article  Google Scholar 

  7. M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, and J.L. Morenza: Laser-induced forward transfer of liquids: Study of the droplet ejection process. J. Appl. Phys. 99, 084909–1 (2006).

    Article  CAS  Google Scholar 

  8. M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, and J.L. Morenza: DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20, 1638 (2005).

    Article  CAS  Google Scholar 

  9. J.M. Fitz-Gerald, A. Piqué, D.B. Chrisey, P.D. Rack, M. Zeleznik, R.C.Y Auyeung, and S. Lakeou: Laser direct writing of phosphor screens for high-definition displays. Appl. Phys. Lett. 76, 1386 (2000).

    Article  CAS  Google Scholar 

  10. M. Brown, N. Kattamis, and C. Arnold: Time-resolved dynamics of laser-induced micro-jets from thin liquid films. Microfluid. Nanofluid. 11, 199 (2011).

    Article  Google Scholar 

  11. N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold: Laser direct write printing of sensitive and robust light emitting organic molecules. Appl. Phys. Lett. 94, 103306–1 (2009).

    Article  CAS  Google Scholar 

  12. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun: Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl. Phys. Lett. 91, 061103–1 (2007).

    Article  CAS  Google Scholar 

  13. J. Xu, J. Liu, D. Cui, M. Gerhold, A.Y. Wang, M. Nagel, and T.K. Lippert: Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters. Nanotechnology 18, 025403–1 (2007).

    Article  CAS  Google Scholar 

  14. S.H. Ko, H. Pan, S.G. Ryu, N. Misra, C.P. Grigoropoulos, and H.K. Park: Nanomaterial enabled laser transfer for organic light emitting material direct writing. Appl. Phys. Lett. 93, 151110–1 (2008).

    Article  CAS  Google Scholar 

  15. A.J. Birnbaum, K. Heungsoo, N.A. Charipar, and A. Piqué: Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Appl. Phys. A 99, 711 (2010).

    Article  CAS  Google Scholar 

  16. M.S. Brown, N.T. Kattamis, and C.B. Arnold: Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J. Appl. Phys. 107, 083103–1 (2010).

    Article  CAS  Google Scholar 

  17. N.T. Kattamis, P.E. Purnick, R. Weiss, and C.B. Arnold: Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl. Phys. Lett. 91, 171120–1 (2007).

    Article  CAS  Google Scholar 

  18. N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold: Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device. Org. Electron. 12, 7 (2011).

    Article  CAS  Google Scholar 

  19. S. Moaveni: Finite Element Analysis: Theory and Application with Ansys, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2007).

    Google Scholar 

  20. Dupont, Kapton Polyimide Film Product Information, p. 3.

  21. A. Mostofi: The incorporation of damping in lumped-parameter modelling techniques: Proceedings of the Institution of Mechanical Engineers, Part K. J. Multi-Body Dynam. 213, 11 (1999).

    Google Scholar 

  22. G.B. Warburton: The Dynamic Behaviour of Structures, 2nd ed. (Pergamon Press, Oxford/New York, 1976).

    Google Scholar 

  23. E.L. Wilson and J. Penzien: Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 4, 5 (1972).

    Article  Google Scholar 

  24. J.F. Hall: Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Eng. Struct. Dynam. 35, 525 (2006).

    Article  Google Scholar 

  25. J.H. Brannon, J.R. Lankard, A.I. Baise, F. Burns, and J. Kaufman: Excimer laser etching of polyimide. J. Appl. Phys. 58, 2036 (1985).

    Article  CAS  Google Scholar 

  26. S. Küper, J. Brannon, and K. Brannon: Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl. Phys., A Solids Surf. 56, 43 (1993).

    Article  Google Scholar 

  27. D.C. Drucker and W. Prager: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157 (1952).

    Article  Google Scholar 

  28. D. Peirce, C.F. Shih, and A. Needleman: A tangent modulus method for rate dependent solids. Comput. Struct. 18, 875 (1984).

    Article  Google Scholar 

  29. R. Krüger, M. König, and T. Schneider: Computation of local energy release rates along straight and curved delamination fronts of unidirectionally laminated DCB and ENF specimens, in Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC SSDM Conference, 1332 (1993).

  30. T.K. Hellen: On the method of virtual crack extensions. Int. J. Numer. Methods Eng. 9, 187 (1975).

    Article  Google Scholar 

  31. D.M. Parks: The virtual crack extension method for nonlinear material behavior. Comput. Meth. Appl. Mech. Eng. 12, 353 (1977).

    Article  Google Scholar 

  32. F.Z. Li, C.F. Shih, and A. Needleman: A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405 (1985).

    Article  Google Scholar 

  33. B. Moran and C.F. Shih: Crack tip and associated domain integrals from momentum and energy balance. Eng. Fract. Mech. 27, 615 (1987).

    Article  Google Scholar 

  34. E.F. Rybicki and M.F. Kanninen: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9, 931 (1977).

    Article  Google Scholar 

  35. K.N. Shivakumar, P.W. Tan, and J.C. Newman Jr.: A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int. J. Fract. 36, R43 (1988).

    Google Scholar 

  36. R. Krueger: Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev. 57, 109 (2004).

    Article  Google Scholar 

  37. L.P. Buchwalter and R.H. Lacombe: Adhesion of polyimide to fluorine-contaminated SiO2 surface. Effect of aminopropyltriethoxysilane on the adhesion. J. Adhes. Sci. Technol. 5, 449 (1991).

    Article  CAS  Google Scholar 

  38. L.P. Buchwalter, T.S. Oh, and J. Kim: Adhesion of polyimides to ceramics. Effects of aminopropyltriethoxysilane and temperature and humidity exposure on adhesion. J. Adhes. Sci. Technol. 5, 333 (1991).

    Article  CAS  Google Scholar 

  39. K.L. Mittal: Adhesion Measurement of Films and Coatings: Relative Adhesion Measurement for Thin Film Microelectronic Structures. Part II, Vol. 2 (VSP, Boston, 2001), p. 26.

    Google Scholar 

  40. W.D. Calister: Material Science and Engineering: An Introduction, 7th edition. (Wiley, New York, 2007).

    Google Scholar 

  41. R.W. Hertzberg: Deformation and Fracture Mechanisms of Engineering Materials, 4th ed. (John Wiley & Sons, Inc., New York, 1996), p. 225.

    Google Scholar 

  42. A.S. Argon: Theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839 (1973).

    Article  CAS  Google Scholar 

  43. M.C. Boyce, D.M. Parks, and A.S. Argon: Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model. Mech. Mater. 7, 15 (1988).

    Article  Google Scholar 

  44. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, and C.R. Siviour: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30, 725 (2004).

    Article  Google Scholar 

  45. E.O.W.J Harding and J.D. Campbell: Tensile testing of materials at high impact rates of strain. J. Mech. Eng. Sci. 2, 88 (1960).

    Article  Google Scholar 

  46. B.A. Hopkinson: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. London, Ser. A 213, 437 (1914).

    Article  CAS  Google Scholar 

  47. G.T. Gray: ASM Handbook Mechanical Testing and Evaluation: Shock Wave Testing of Ductile Materials, Vol. 8 (ASM International, Materials Park, OH, 2000), p. 530.

    Google Scholar 

  48. P. Perzyna: Advances in Applied Mechanics: Fundamental Problems in Viscoplasticity, Vol. 9 (Academic Press, New York, 1966), p. 243.

    Article  CAS  Google Scholar 

  49. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775 (1990).

    Article  CAS  Google Scholar 

  50. G. Paraskevopoulos, D.L. Singleton, R.S. Irwin, and R.S. Taylor: Time-resolved reflectivity as a probe of the dynamics of laser ablation of organic polymers. J. Appl. Phys. 70, 1938 (1991).

    Article  CAS  Google Scholar 

  51. M.N. Ediger and G.H. Pettit: Time-resolved reflectivity of ArF laser-irradiated polyimide. J. Appl. Phys. 71, 3510 (1992).

    Article  CAS  Google Scholar 

  52. D.L. Singleton, G. Paraskevopoulos, and R.S. Taylor: Dynamics of excimer laser ablation of polyimide determined by time-resolved reflectivity. Appl. Phys., B Photophys. Laser Chem. 50, 227 (1990).

    Article  Google Scholar 

  53. G.H. Pettit, M.N. Ediger, D.W. Hahn, B.E. Brinson, and R. Sauerbrey: Transmission of polyimide during pulsed ultraviolet laser irradiation. Appl. Phys., A Solids Surf. 58, 573 (1994).

    Article  Google Scholar 

  54. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe: Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained. J. Appl. Phys. 83, 5458 (1998).

    Article  CAS  Google Scholar 

  55. G. Koren: Temporal measurements of photofragment attenuation at 248 nm in the laser ablation of polyimide in air. Appl. Phys. Lett. 50, 1030 (1987).

    Article  CAS  Google Scholar 

  56. A.F. Bower: Applied Mechanics of Solids (CRC Press, New York, 2010), p. 553.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (MRSEC Program) through the Princeton Center for Complex Materials (DMR 0819860), the National Science Foundation (DMR-0548147), and the Air Force Office of Scientific Research (AFOSR-FA9550-08-1-0094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kattamis, N.T., Brown, M.S. & Arnold, C.B. Finite element analysis of blister formation in laser-induced forward transfer. Journal of Materials Research 26, 2438–2449 (2011). https://doi.org/10.1557/jmr.2011.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.215

Navigation