Skip to main content
Log in

Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the results of constant strain rate experiments on electroplated, single crystalline copper pillars with diameters between 75 and 525 nm. At slow strain rates, 10−3 s−1, pillar diameters with 150 nm and above show a size-dependent strength similar to previous reports. Below 150 nm, we find that the size effect vanishes as the strength transitions to a relatively size-independent regime. Strain rate sensitivity and activation volume are determined from uniaxial compression tests at different strain rates and corroborate a deformation mechanism change. These results are discussed in the framework of recent in situ transmission electron microscopy experiments observing two distinct deformation mechanisms in pillars and thin films on flexible substrates: partial dislocation nucleation from stress concentrations in smaller structures and single arm source operation in larger samples. Models attempting to explain these different size-dependent regimes are discussed in relation to these experiments and existing literature revealing further insights into the likely small-scale deformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. G.I. Taylor: Plastic strain in metals. J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  2. E.O. Hall: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. London, Sect. B 64, 747 (1951).

    Article  Google Scholar 

  3. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  4. G. Dehm: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Prog. Mater. Sci. 54, 664 (2009).

    Article  CAS  Google Scholar 

  5. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    CAS  Google Scholar 

  6. O. Kraft, P. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    CAS  Google Scholar 

  7. J.R. Greer and J.T.M. De Hosson: Review: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    CAS  Google Scholar 

  8. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 (2007).

    Article  CAS  Google Scholar 

  9. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).

    Article  CAS  Google Scholar 

  10. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  11. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  12. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).

    Article  CAS  Google Scholar 

  13. P.A. Gruber, C. Solenthaler, E. Arzt, and R. Spolenak: Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, 1876 (2008).

    Article  CAS  Google Scholar 

  14. S.H. Oh, M. Legros, D. Kiener, P. Gruber, and G. Dehm: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 (2007).

    Article  CAS  Google Scholar 

  15. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).

    Article  CAS  Google Scholar 

  16. S. Rao, D. Dimiduk, M. Tang, T. Parthasarathy, M. Uchic, and C. Woodward: Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777 (2007).

    Article  CAS  Google Scholar 

  17. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, and C. Woodward: Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245 (2008).

    Article  CAS  Google Scholar 

  18. D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, and M.J. Mills: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).

    Article  CAS  Google Scholar 

  19. B. von Blanckenhagen, E. Arst, and P. Gumbsch: Discrete dislocation simulation of plastic deformation in metal thin films. Acta Mater. 52, 773 (2004).

    Article  CAS  Google Scholar 

  20. H. Tang, K.W. Schwarz, and H.D. Espinosa: Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607 (2007).

    Article  CAS  Google Scholar 

  21. H. Tang, K.W. Schwarz, and H.D. Espinosa: Dislocation-source shutdown and the plastic behavior of single-crystal micropillars. Phys. Rev. Lett. 100, 185503 (2008).

    Article  CAS  Google Scholar 

  22. D. Weygand, M. Poignant, P. Gumbsch and O. Kraft: Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress-strain behavior of fcc single-crystalline pillars. Mater. Sci. Eng., A 483, 188 (2008).

    Article  CAS  Google Scholar 

  23. J. Senger, D. Weygand, P. Gumbsch, and O. Kraft: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58, 587 (2008).

    Article  CAS  Google Scholar 

  24. S.H. Oh, M. Legros, D. Kiener, and G. Dehm: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95 (2009).

    Article  CAS  Google Scholar 

  25. A.T. Jennings, J. Li, and J.R. Greer: Emergence of strain rate sensitivity in Cu nano-pillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).

    Article  CAS  Google Scholar 

  26. G. Richter, K. Hillerich, D.S. Gianola, R. Mönig, O. Kraft, and C.A. Volkert: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048 (2009).

    Article  CAS  Google Scholar 

  27. H. Zheng, A. Cao, C. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S.X. Mao: Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010).

    Article  CAS  Google Scholar 

  28. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  CAS  Google Scholar 

  29. C. Deng and F. Sansoz: Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. App. Phys. Lett. 95, 091914 (2009).

    Article  CAS  Google Scholar 

  30. M.J. Burek and J.R. Greer: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69 (2010).

    Article  CAS  Google Scholar 

  31. A.T. Jennings, M.J. Burek, and J.R. Greer: Microstructure versus size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  CAS  Google Scholar 

  32. A.T. Jennings and J.R. Greer: Tensile deformation of electroplated copper nanopillars. Philos. Mag. 91, 1108 (2011).

    Article  CAS  Google Scholar 

  33. H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).

    Article  CAS  Google Scholar 

  34. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  35. S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57, 503 (2009).

    Article  CAS  Google Scholar 

  36. S. Buzzi, M. Dietiker, K. Kunze, R. Spolenak, and J.F. Loffler: Deformation behavior of silver submicrometer-pillars prepared by nanoimprinting. Philos. Mag. 89, 869 (2009).

    Article  CAS  Google Scholar 

  37. M. Dietiker, S. Buzzi, G. Pigozzi, J.F. Loffler, and R. Spolenak: Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused-ion-beam milling. Acta Mater. 59, 2180 (2011).

    Article  CAS  Google Scholar 

  38. D. Kiener and A.M. Minor: Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Mater. 59, 1328 (2011).

    Article  CAS  Google Scholar 

  39. M.B. Lowry, D. Kiener, M.M. LeBlanc, C. Chisholm, J.N. Florando, J.W. Morris, and A.M. Minor: Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 58, 5160 (2010).

    Article  CAS  Google Scholar 

  40. J.R. Greer, D.C. Jang, J.Y. Kim, and M.J. Burek: Emergence of new mechanical functionality in materials via size reduction. Adv. Funct. Mater. 19, 2880 (2009).

    Article  CAS  Google Scholar 

  41. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975).

    Article  Google Scholar 

  42. W.D. Nix and S.W. Lee: Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philos. Mag. 91, 1084 (2011).

    Article  CAS  Google Scholar 

  43. K.S. Ng and A.H.W. Ngan: Stochastic theory for jerky deformation in small crystal volumes with pre-existing dislocations. Philos. Mag. 88, 677 (2008).

    Article  CAS  Google Scholar 

  44. S.S. Brenner: Tensile strength of whiskers. J. Appl. Phys. 27, 1484 (1956).

    Article  CAS  Google Scholar 

  45. Y. Lu, J.Y. Huang, C. Wang, S.H. Sun, and J. Lou: Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218 (2010).

    Article  CAS  Google Scholar 

  46. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  47. C.R. Weinberger and W. Cai: Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. USA 105, 14304 (2008).

    Article  CAS  Google Scholar 

  48. W. Nix: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  49. L.B. Freund: The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. 54, 553 (1987).

    Article  CAS  Google Scholar 

  50. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  CAS  Google Scholar 

  51. M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, and X.M. Cheng: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 (2003).

    Article  CAS  Google Scholar 

  52. S. Aubry, K. Kang, S. Ryu, and W. Cai: Energy barrier for homogeneous dislocation nucleation: Comparing atomistic and continuum models. Scr. Mater. 64, 1043 (2011).

    Article  CAS  Google Scholar 

  53. G.E. Beltz and L.B. Freund: On the nucleation of dislocations at a crystal surface. Phys. Status Solidi B 180, 303 (1993).

    Article  CAS  Google Scholar 

  54. C.R. Weinberger, A.T. Jennings, K. Kang and J.R. Greer: Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids (2011, doi:10.1016/j.jmps.2011.09.010).

    Google Scholar 

  55. Y. Estrin, H.S. Kim, and F.R.N. Nabarro: A comment on the role of Frank-Read sources in plasticity of nanomaterials. Acta Mater. 55, 6401 (2007).

    Article  CAS  Google Scholar 

  56. R.M. Shemenski: Thermal activation of a dislocation source. ASM Trans. Q. 58, 360 (1965).

    CAS  Google Scholar 

  57. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Article  Google Scholar 

  58. T. Zhu and J. Li: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  59. X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).

    Article  CAS  Google Scholar 

  60. H. Van Swygenhoven, P.M. Derlet, and A.G. Froseth: Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledges the financial support of the National Science Foundation through ATJ’s NSF Graduate Research fellowship and JRG’s CAREER grant (DMR-0748267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia R. Greer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, A.T., Greer, J.R. Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals. Journal of Materials Research 26, 2803–2814 (2011). https://doi.org/10.1557/jmr.2011.338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.338

Keywords

Navigation