Skip to main content
Log in

Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) nanostructures receive sustained interest for a wide variety of applications, and especially for its usage as a photocatalyst. It is therefore important to find suitable methods allowing for its easy and inexpensive large scale production. Tungstite (WO3·H2O) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4·2H2O) at temperatures below 5 °C and then dissolved using oxalic acid. This HT process yielded tungstite (WO3·H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 °C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production of WO3 nanoparticles using this method is therefore a three step process: protonation of tungstate ions, crystallization of tungstite, and phase transformation to WO3. Furthermore, this process can be tailored. For example, we show that WO3 can be doped with cesium and that nanorods can also be obtained. The products were characterized using powder x-ray diffraction, transmission electron microscopy (including electron energy-loss spectroscopy and electron diffraction), and x-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. N. Soultanidis, W. Zhou, C.J. Kiely, and M.S. Wong: Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28, 17771 (2012).

    CAS  Google Scholar 

  2. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 (2001).

    CAS  Google Scholar 

  3. H. Zheng, Y. Tachibana, and K. Kalantar-zadeh: Dye-sensitized solar cells based on WO3. Langmuir 26, 19148 (2010).

    CAS  Google Scholar 

  4. V. Wood, M.J. Panzer, J.E. Halpert, J.M. Caruge, M.G. Bawendi, and V. Bulovic: Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3, 3581 (2009).

    CAS  Google Scholar 

  5. A. Srinivasan and M. Miyauchi: Chemically stable WO3 based thin-film for visible-light induced oxidation and superhydrophilicity. J. Phys. Chem. C 116, 15421 (2012).

    CAS  Google Scholar 

  6. S. Ahmed, I.A.I. Hassan, H. Roy, and F. Marken: Photoelectrochemical transients for chlorine/hypochlorite formation at “roll-on” nano-WO3 film electrodes. J. Phys. Chem. C 117, 7005 (2013).

    CAS  Google Scholar 

  7. X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, and Z. Zou: Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5, 4310 (2011).

    CAS  Google Scholar 

  8. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).

    CAS  Google Scholar 

  9. K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen: Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858 (2010).

    CAS  Google Scholar 

  10. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, and K. Domen: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem. Lett. 37, 138 (2008).

    CAS  Google Scholar 

  11. M.R. Waller, T.K. Townsend, J. Zhao, E.M. Sabio, R.L. Chamousis, N.D. Browning, and F.E. Osterloh: Single-crystal tungsten oxide nanosheets: Photochemical water oxidation in the quantum confinement regime. Chem. Mater. 24, 698 (2012).

    CAS  Google Scholar 

  12. R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig, and N.S. Lewis: Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117, 6949 (2013).

    CAS  Google Scholar 

  13. J. Su, L. Guo, N. Bao, and C.A. Grimes: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928 (2011).

    CAS  Google Scholar 

  14. X. Cui, J. Shi, H. Chen, L. Zhang, L. Guo, J. Gao, and J. Li: Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B 112, 12024 (2008).

    CAS  Google Scholar 

  15. Q. Chen, J. Li, X. Li, K. Huang, B. Zhou, W. Cai, and W. Shangguan: Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environ. Sci. Technol. 46, 11451 (2012).

    CAS  Google Scholar 

  16. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, and M.H. Whangbo: Ag/AgBr/WO3.H2O: Visible-light photocatalyst for bacteria destruction. Inorg. Chem. 48, 10697 (2009).

    CAS  Google Scholar 

  17. X. Chen, Y. Zhou, Q. Liu, Z. Li, J. Liu, and Z. Zou: Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 4, 3372 (2012).

    CAS  Google Scholar 

  18. J. Yin, H. Cao, J. Zhang, M. Qu, and Z. Zhou: Synthesis and applications of γ-tungsten oxide hierarchical nanostructures. Cryst. Growth Des. 13, 759 (2013).

    CAS  Google Scholar 

  19. D. Li, G. Wu, G. Gao, J. Shen, and F. Huang: Ultrafast coloring-bleaching performance of nanoporous WO3–SiO2 gasochromic films doped with Pd catalyst. ACS Appl. Mater. Interfaces 3, 4573 (2011).

    CAS  Google Scholar 

  20. Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, and J.Q. Xu: Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 114, 2049 (2010).

    CAS  Google Scholar 

  21. M. Righettoni, A. Tricoli, and S.E. Pratsinis: Thermally-stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152 (2010).

    CAS  Google Scholar 

  22. G. Gu, B. Zheng, W.Q. Han, S. Roth, and J. Liu: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 (2002).

    CAS  Google Scholar 

  23. M.J. Hudson, J.W. Peckett, and P.J.F. Harris: A new and effective synthesis of non-stoichiometric metal oxides such as oxygen-deficient WO2.72. J. Mater. Chem. 13, 445 (2003).

    CAS  Google Scholar 

  24. J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, and M. Niederberger: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem., Int. Ed. 45, 261 (2005).

    Google Scholar 

  25. J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 (2005).

    CAS  Google Scholar 

  26. C. Klinke, J.B. Hannon, L. Gignac, K. Reuter, and P. Avouris: Tungsten oxide nanowire growth by chemically induced strain. J. Phys. Chem. B 109, 17787 (2005).

    CAS  Google Scholar 

  27. A.P.E. York, J. Sloan, M.L.H. Green, and J. Sloan: Epitaxial growth of WO3−x needles on (10–10) and (01–10) WC surfaces produced by controlled oxidation with CO2. Chem. Commun. 3, 269–270 (1999).

    Google Scholar 

  28. Z. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma, and J. Yao: Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B 110, 23829 (2006).

    CAS  Google Scholar 

  29. M. Shibuya and M. Miyauchi: Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films. Adv. Mater. 21, 1373 (2009).

    CAS  Google Scholar 

  30. S. Supothina, P. Seeharaj, S. Yoriya, and M. Sriyudthsak: Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931 (2007).

    CAS  Google Scholar 

  31. M. Sun, N. Xu, Y.W. Cao, J.N. Yao, and E.G. Wang: Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res. 15, 927 (2000).

    CAS  Google Scholar 

  32. M. Ahmadi and M. Guinel: Large-scale synthesis of tungsten oxide (WO3) nanoleaves, nanoparticles and nanoflakes. Microsc. Microanal. 19(S2), 1580 (2013).

    Google Scholar 

  33. M. Ahmadi and M. Guinel: Synthesis and characterization of tungstite (WO3.H2O) nanoleaves and nanoribbons. Acta Mater. 69, 203 (2014).

    CAS  Google Scholar 

  34. J.T. Szymanski and A.C. Roberts: The crystal structure of tungstite, WO3.H2O. Can. Minerol. 22, 681 (1984).

    CAS  Google Scholar 

  35. B.O. Loopstra and P. Boldrini: Neutron diffraction investigation of WO3. Acta Cryst. 21, 158 (1966).

    CAS  Google Scholar 

  36. A.F. Holleman, E. Wiberg, and N. Wiberg: Inorganic Chemistry (Academic Press, Berlin, New York, Walter De Gruyter, San Diego, 2001); p. 1389.

    Google Scholar 

  37. C. Balazsi and J. Pfeifer: Structure and morphology changes caused by wash treatment of tungstic acid precipitates. Solid State Ionics 124, 73 (1999).

    CAS  Google Scholar 

  38. Y. Miseki, H. Kusama, H. Sugihara, and K. Sayama: Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. J. Phys. Chem. Lett. 1, 1196 (2010).

    CAS  Google Scholar 

  39. M. Ahmadi, S. Sahoo, R. Younesi, A.P.S. Gaur, R.S. Katiyar, and M. Guinel: WO3 nano-ribbons: Their phase transformation from tungstite (WO3.H2O) to tungsten oxide (WO3). J. Mater. Sci. 49(17), 5899 (2014).

    CAS  Google Scholar 

  40. Y. Baek and K. Yong: Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J. Phys. Chem. C 111, 1213 (2007).

    CAS  Google Scholar 

  41. C.C. Ahn and O.L. Krivanek: EELS Atlas: A Reference Guide of Electron Energy Loss Spectra Covering All Stable Elements (ASU HREM Facility & GatanInc, Warrendale, PA, 1983).

    Google Scholar 

  42. A.S. Sefat, G. Amow, M.Y. Wu, G.A. Botton, and J.E. Greedan: High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x = 0 to 0.33. J. Solid State Chem. 178, 1008 (2005).

    CAS  Google Scholar 

  43. C.C. Ahn and P. Rez: Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy 17, 105 (1985).

    CAS  Google Scholar 

  44. F. Jollet, T. Petit, S. Gota, N. Thromat, M. Soyer Gautier, and A. Pasturel: The electronic structure of uranium dioxide: An oxygen K-edge x-ray absorption study. J. Phys.: Condens. Matter 9, 9393 (1997).

    CAS  Google Scholar 

  45. A. Harvey, B. Guo, I. Kennedy, S. Risbud, and V. Leppert: A systematic study of the oxygen K edge in the cubic and less common monoclinic phases of the rare earth oxides (Ho, Er, Tm, Yb) by electon energy loss spectroscopy. J. Phys.: Condens. Matter 18, 2181 (2006).

    CAS  Google Scholar 

  46. D.W. McComb: Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy. Phys. Rev. B 54, 7094 (1996).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The partial support from NSEC Center for Hierarchical Manufacturing at the University of Massachusetts (National Science Foundation award 1025020). NSF for its support (award 0701525) to the Nanoscopy Facility, an electron microscopy facility at UPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime J.-F. Guinel.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Younesi, R. & Guinel, M.JF. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. Journal of Materials Research 29, 1424–1430 (2014). https://doi.org/10.1557/jmr.2014.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.155

Navigation