Skip to main content
Log in

Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

  • Prospective Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create “hairy nanoparticles” (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle–matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure–performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R. Mezzenga and J. Ruokolainen: Nanocomposites: nanoparticles in the right place. Nat. Mater. 8, 926–928 (2009).

    CAS  Google Scholar 

  2. A.J. Crosby and J. Lee: Polymer nanocomposites: the ‘nano’ effect on mechanical properties. Polym. Rev. 47, 217–229 (2007).

    CAS  Google Scholar 

  3. R. Krishnamoorti and R.A. Vaia: Polymer nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 45, 3252–3256 (2007).

    CAS  Google Scholar 

  4. S.K. Kumar and R. Krishnamoorti: Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 1, 37–58 (2010).

    CAS  Google Scholar 

  5. K.I. Winey and R.A. Vaia: Polymer nanocomposites. MRS Bull. 32, 314–322 (2007).

    CAS  Google Scholar 

  6. R.A. Vaia and J.F. Maguire: Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736–2751 (2007).

    CAS  Google Scholar 

  7. A.-S. Robbes, F. Cousin, F. Meneau, F. Dalmas, F. Boué, and J. Jestin: Nanocomposite materials with controlled anisotropic reinforcement triggered by magnetic self-assembly. Macromolecules 44, 8858–8865 (2011).

    CAS  Google Scholar 

  8. M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, and R.S. Krishnan: General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    CAS  Google Scholar 

  9. M. van der Waarden: Stabilization of carbon-black dispersions in hydrocarbons. J. Colloid Sci. 5, 317–325 (1950).

    Google Scholar 

  10. D.H. Napper. Polymeric Stabilization of Colloidal Dispersions (Academic Press, London, 1983).

    Google Scholar 

  11. T.A. Witten and P.A. Pincus: Colloid stabilization by long grafted polymers. Macromolecules 19, 2509–2513 (1986).

    CAS  Google Scholar 

  12. R. Krishnamoorti: Strategies for dispersing nanoparticles in polymers. MRS Bull. 32, 341–347 (2007).

    CAS  Google Scholar 

  13. S. Fischer, A. Salcher, A. Kornowski, H. Weller, and S. Förster: Completely miscible nanocomposites. Angew. Chem. Int. Ed. Engl. 50, 7811–7814 (2011).

    CAS  Google Scholar 

  14. P. Akcora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L. S. Schadler, D. Acehan, A.Z. Panagiotopoulos, V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, and J.F. Douglas: Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 8, 354–359 (2009).

    CAS  Google Scholar 

  15. S. Coppée, S. Gabriele, A.M. Jonas, J. Jestin, and P. Damman: Influence of chain interdiffusion between immiscible polymers on dewetting dynamics. Soft Matter 7, 9951 (2011).

    Google Scholar 

  16. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson (Blackwell Scientific Publications, Oxford, 1997).

    Google Scholar 

  17. D. Vlassopoulos and G. Fytas: From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles. In. Advances in Polymer Science: High Solid Dispersions, edited by M. Cloitre (Springer, 236, Berlin, Heidelberg, 2010), pp. 1–54.

    Google Scholar 

  18. C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, and D. Richter: Star polymers viewed as ultrasoft colloidal particles. Phys. Rev. Lett. 80, 4450–4453 (1998).

    CAS  Google Scholar 

  19. J. Gohy: Block Copolymer Micelles. In Block Copolymers II, edited by V. Abetz (Springer-Verlag, 190, Berlin, 2005). pp. 65–136.

    Google Scholar 

  20. N. Osterman, D. Babicˇ, I. Poberaj, J. Dobnikar, and P. Ziherl: Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev.Lett. 99, 248301 (2007).

    CAS  Google Scholar 

  21. M. Daoud and J. Cotton: Star shaped polymers: a model for the conformation and its concentration dependence. J. Phys. 43, 531–538 (1982).

    CAS  Google Scholar 

  22. D. Dukes, Y. Li, S. Lewis, B. Benicewicz, L. Schadler, and S.K. Kumar: Conformational transitions of spherical polymer brushes: synthesis, characterization, and theory. Macromolecules 43, 1564–1570 (2010).

    CAS  Google Scholar 

  23. K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii, and T. Fukuda: Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 40, 9143–9150 (2007).

    CAS  Google Scholar 

  24. S.T. Milner, T.A. Witten, and M.E. Cates: Theory of the grafted polymer brush. Macromolecules 21, 2610–2619 (1988).

    CAS  Google Scholar 

  25. C.M. Wijmans and E.B. Zhulina: Polymer brushes at curved surfaces. Macromolecules 26, 7214–7224 (1993).

    CAS  Google Scholar 

  26. C.N. Likos: Effective interactions in soft condensed matter physics. Phys. Rep. 348, 267–439 (2001).

    CAS  Google Scholar 

  27. M. Watzlawek, C.N. Likos, and H. Löwen: Phase diagram of star polymer solutions. Phys. Rev. Lett. 82, 5289–5292 (1999).

    CAS  Google Scholar 

  28. J.U. Kim and M.W. Matsen: Interaction between polymer-grafted particles. Macromolecules 41, 4435–4443 (2008).

    CAS  Google Scholar 

  29. V. Goel, J. Pietrasik, H. Dong, J. Sharma, K. Matyjaszewski, and R. Krishnamoorti: Structure of polymer tethered highly grafted nanoparticles. Macromolecules 44, 8129–8135 (2011).

    CAS  Google Scholar 

  30. V. Goel, J. Pietrasik, K. Matyjaszewski, and R. Krishnamoorti: Linear viscoelasticity of spherical SiO2 nanoparticle-tethered poly(butyl acrylate) hybrids. Ind. Eng. Chem. Res. 49, 11985–11990 (2010).

    CAS  Google Scholar 

  31. H.-Y. Yu and D.L. Koch: Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir 26, 16801–16811 (2010).

    CAS  Google Scholar 

  32. A. Chremos, A.Z. Panagiotopoulos, H.-Y. Yu, and D.L. Koch: Structure of solvent-free grafted nanoparticles: molecular dynamics and densityfunctional theory. J. Chem. Phys. 135, 114901 (2011).

    Google Scholar 

  33. B. Hong, A. Chremos, and A.Z. Panagiotopoulos: Dynamics in coarsegrained models for oligomer-grafted silica nanoparticles. J. Chem. Phys. 136, 204904 (2012).

    Google Scholar 

  34. A. Chremos and A. Panagiotopoulos: Structural transitions of solventfree oligomer-grafted nanoparticles. Phys. Rev. Lett. 107, 105503 (2011).

    Google Scholar 

  35. K.J.M. Bishop, C.E. Wilmer, S. Soh, and B.A. Grzybowski: Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Google Scholar 

  36. P. Akcora, S.K. Kumar, V. Garci’a Sakai, Y. Li, B.C. Benicewicz, and L. S. Schadler: Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43, 8275–8281 (2010).

    CAS  Google Scholar 

  37. P. Akcora, S.K. Kumar, J. Moll, S. Lewis, L.S. Schadler, Y. Li, B. C. Benicewicz, A. Sandy, S. Narayanan, J. Ilavsky, P. Thiyagarajan, R. H. Colby, and J.F. Douglas: ‘Gel-like’ mechanical reinforcement in polymer nanocomposite melts. Macromolecules 43, 1003–1010 (2010).

    CAS  Google Scholar 

  38. M.E. McEwan, S.a. Egorov, J. Ilavsky, D.L. Green, and Y. Yang: Mechanical reinforcement of polymer nanocomposites: theory and ultrasmall angle x-ray scattering (USAXS) studies. Soft Matter 7, 2725 (2011).

    CAS  Google Scholar 

  39. J. Choi, C.M. Hui, J. Pietrasik, H. Dong, K. Matyjaszewski, and M. R. Bockstaller: Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter 8, 4072 (2012).

    CAS  Google Scholar 

  40. P. Agarwal, M. Chopra, and L.A. Archer: Nanoparticle netpoints for shape-memory polymers. Angew. Chem. Int. Ed. Engl. 50, 8670–8673 (2011).

    CAS  Google Scholar 

  41. B.V.S. Iyer, I.G. Salib, V.V. Yashin, T. Kowalewski, K. Matyjaszewski, and A.C. Balazs: Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9, 109–121 (2013). doi:10.1039/c2sm27121d

    CAS  Google Scholar 

  42. S. Torquato, S. Hyun, and A. Donev: Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89, 266601 (2002).

    CAS  Google Scholar 

  43. J.K. Guest and J.H. Prévost: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43, 7028–7047 (2006).

    Google Scholar 

  44. K. Hur, R.G. Hennig, F.A. Escobedo, and U. Wiesner: Mesoscopic structure prediction of nanoparticle assembly and coassembly: theoretical foundation. J. Chem. Phys. 133, 194108 (2010).

    Google Scholar 

  45. R. Shenhar, T.B. Norsten, and V.M. Rotello: Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657–669 (2005).

    CAS  Google Scholar 

  46. C.-T. Lo, B. Lee, N.L.D. Rago, R.E. Winans, and P. Thiyagarajan: Strategy for better ordering in diblock copolymer based nanocomposites. Macromol. Rapid Commun. 28, 1607–1612 (2007).

    CAS  Google Scholar 

  47. M.R. Bockstaller, R.A. Mickiewicz, and E.L. Thomas: Block copolymer nanocomposites: perspectives for tailored functional materials. Adv. Mater. 17, 1331–1349 (2005).

    CAS  Google Scholar 

  48. X. Zhu, L. Wang, J. Lin, and L. Zhang: Ordered nanostructures selfassembled from block copolymer tethered nanoparticles. ACS Nano 4, 4979–4988 (2010).

    CAS  Google Scholar 

  49. G.-K. Xu, X.-Q. Feng, and S.-W. Yu: Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites. Nano Res. 3, 356–362 (2010).

    CAS  Google Scholar 

  50. M. Wojcik, W. Lewandowski, J. Matraszek, J. Mieczkowski, J. Borysiuk, D. Pociecha, and E. Gorecka: Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 5167–5169 (2009).

    CAS  Google Scholar 

  51. I. In, Y. Jun, Y.J. Kim, and S.Y. Kim: Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. (Camb.) (6), 800–801 (2005). doi:10.1039/b413510e

    Google Scholar 

  52. J. He, Y. Liu, T. Babu, Z. Wei, and Z. Nie: Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 134, 11342–11345 (2012).

    CAS  Google Scholar 

  53. Y. Guo, S. Harirchian-Saei, C.M.S. Izumi, and M.G. Moffitt: Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 5, 3309–3318 (2011).

    CAS  Google Scholar 

  54. A. Jayaraman and K.S. Schweizer: Effective interactions and selfassembly of hybrid polymer grafted nanoparticles in a homopolymer matrix. Macromolecules 42, 8423–8434 (2009).

    CAS  Google Scholar 

  55. A. Jayaraman and K.S. Schweizer: Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008).

    Google Scholar 

  56. A. Jayaraman and K.S. Schweizer: Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles. Langmuir 24, 11119–11130 (2008).

    CAS  Google Scholar 

  57. C.R. Iacovella and S.C. Glotzer: Complex crystal structures formed by the self-assembly of ditethered nanospheres. Nano Lett. 9, 1206–1211 (2009).

    CAS  Google Scholar 

  58. C.L. Phillips, C.R. Iacovella, and S.C. Glotzer: Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems. Soft Matter 6, 1693 (2010).

    CAS  Google Scholar 

  59. B. Wang, B. Li, B. Dong, B. Zhao, and C.Y. Li: Homo- and hetero-particle clusters formed by Janus nanoparticles with bicompartment polymer brushes. Macromolecules 43, 9234–9238 (2010).

    CAS  Google Scholar 

  60. Y. Xia, Y. Xiong, B. Lim, and S.E. Skrabalak: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl. 48, 60–103 (2009).

    CAS  Google Scholar 

  61. A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán: Nanostars shine bright for you. Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).

    Google Scholar 

  62. C. Wang, C. Xu, H. Zeng, and S. Sun: Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. Weinheim 21, 3045–3052 (2009).

    CAS  Google Scholar 

  63. S.C. Glotzer, M.A. Horsch, C.R. Iacovella, Z. Zhang, E.R. Chan, and X. Zhang: Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Curr. Opin. Colloid Interface Sci. 10, 287–295 (2005).

    CAS  Google Scholar 

  64. M.A. Horsch, M.H. Lamm, and S.C. Glotzer: Tethered nano building blocks: toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 1341–1346 (2003).

    Google Scholar 

  65. S.C. Glotzer and M.J. Solomon: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

  66. D. Nykypanchuk, M.M. Maye, D. van der Lelie, and O. Gang: DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Google Scholar 

  67. J.M. Slocik, F. Tam, N.J. Halas, and R.R. Naik: Peptide-assembled optically responsive nanoparticle complexes. Nano Lett. 7, 1054–1058 (2007).

    CAS  Google Scholar 

  68. S.C. Glotzer: Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    Google Scholar 

  69. G. Malescio and G. Pellicane: Stripe phases from isotropic repulsive interactions. Nat. Mater. 2, 97–100 (2003).

    CAS  Google Scholar 

  70. C.N. Likos: Soft matter with soft particles. Soft Matter 2, 478 (2006).

    CAS  Google Scholar 

  71. A.K. Kandar, S. Srivastava, J.K. Basu, M.K. Mukhopadhyay, S. Seifert, and S. Narayanan: Unusual dynamical arrest in polymer grafted nanoparticles. J. Chem. Phys. 130, 121102 (2009).

    CAS  Google Scholar 

  72. P. Agarwal, S. Srivastava, and L. Archer: Thermal jamming of a colloidal glass. Phys. Rev. Lett. 107, 268302 (2011).

    Google Scholar 

  73. D.A. Savin, J. Pyun, G.D. Patterson, T. Kowalewski, and K. Matyjaszewski: Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J. Polym. Sci. Part B: Polym. Phys. 40, 2667–2676 (2002).

    CAS  Google Scholar 

  74. M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P. A. Mirau, M.F. Durstock, and R.A. Vaia: Assemblies of titanium dioxidepolystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 1749–1759 (2010).

    CAS  Google Scholar 

  75. P. Agarwal, H. Qi, and L.A. Archer: The ages in a self-suspended nanoparticle liquid. Nano Lett. 10, 111–115 (2010).

    CAS  Google Scholar 

  76. R. Rodriguez, R. Herrera, L.A. Archer, and E.P. Giannelis: Nanoscale ionic materials. Adv. Mater. 20, 4353–4358 (2008).

    CAS  Google Scholar 

  77. A.B. Bourlinos, R. Herrera, N. Chalkias, D.D. Jiang, Q. Zhang, L. A. Archer, and E.P. Giannelis: Surface-functionalized nanoparticles with liquid-like behavior. Adv. Mater. 17, 234–237 (2005).

    CAS  Google Scholar 

  78. D.S. Pearson and E. Helfand: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888–895 (1984).

    CAS  Google Scholar 

  79. A. Chremos, A.Z. Panagiotopoulos, and D.L. Koch: Dynamics of solventfree grafted nanoparticles. J. Chem. Phys. 136, 044902 (2012).

    Google Scholar 

  80. A.B. Bourlinos, E.P. Giannelis, Q. Zhang, L.A. Archer, G. Floudas, and G. Fytas: Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur. Phys. J. E Soft Matter 20, 109–117 (2006).

    CAS  Google Scholar 

  81. A.B. Bourlinos, S. Ray Chowdhury, R. Herrera, D.D. Jiang, Q. Zhang, L. A. Archer, and E.P. Giannelis: Functionalized nanostructures with liquidlike behavior: expanding the gallery of available nanostructures. Adv. Funct. Mater. 15, 1285–1290 (2005).

    CAS  Google Scholar 

  82. R. Rodriguez, R. Herrera, A.B. Bourlinos, R. Li, A. Amassian, L. A. Archer, and E.P. Giannelis: The synthesis and properties of nanoscale ionic materials. Appl. Organometal. Chemis. 24, 581–589 (2010).

    CAS  Google Scholar 

  83. B. Hong, A. Chremos, and A.Z. Panagiotopoulos: Simulations of the structure and dynamics of nanoparticle-based ionic liquids. Faraday Discus. 154, 29 (2012).

    CAS  Google Scholar 

  84. M.L. Jespersen, P.A. Mirau, E. von Meerwall, R.A. Vaia, R. Rodriguez, and E.P. Giannelis: Canopy dynamics in nanoscale ionic materials. ACS Nano 4, 3735–3742 (2010).

    CAS  Google Scholar 

  85. H. Cui, Y. Feng, W. Ren, T. Zeng, H. Lv, and Y. Pan: Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat. Nanotechnol. 3, 32–41 (2009).

    CAS  Google Scholar 

  86. O. Masala and R. Seshadri: Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res. 34, 41–81 (2004).

    CAS  Google Scholar 

  87. G. Liu, X. Yan, Z. Lu, S.a. Curda, and J. Lal: One-pot synthesis of block copolymer coated cobalt nanocrystals. Chem. Mater. 17, 4985–4991 (2005).

    CAS  Google Scholar 

  88. Y. Zhang, S. Luo, and S. Liu: Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach. Macromolecules 38, 9813–9820 (2005).

    CAS  Google Scholar 

  89. R. Subbiah, M. Veerapandian, and K.S. Yun: Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr. Med. Chem. 17, 4559–4577 (2010).

    CAS  Google Scholar 

  90. M.-A. Neouze and U. Schubert: Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Chem.–Chem. Monthly 139, 183–195 (2008).

    CAS  Google Scholar 

  91. R.B. Grubbs: Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 47, 197–215 (2007).

    CAS  Google Scholar 

  92. W.P. Wuelfing, S.M. Gross, D.T. Miles, and R.W. Murray: Nanometer gold clusters protected by surface-bound monolayers of thiolated poly (ethylene glycol) polymer electrolyte. J. Am. Chem. Soc. 120, 12696–12697 (1998).

    CAS  Google Scholar 

  93. M.K. Corbierre, N.S. Cameron, and R.B. Lennox: Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20, 2867–2873 (2004).

    CAS  Google Scholar 

  94. Y. Zheng, J. Zhang, L. Lan, P. Yu, R. Rodriguez, R. Herrera, D. Wang, and E.P. Giannelis: Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chemphyschem 11, 61–64 (2010).

    CAS  Google Scholar 

  95. S. Mehdizadeh Taheri, S. Fischer, and S. Förster: Routes to nanoparticlepolymer superlattices. Polymers 3, 662–673 (2011).

    Google Scholar 

  96. L.S. Penn, H. Huang, M.D. Sindkhedkar, S.E. Rankin, K. Chittenden, R. P. Quirk, R.T. Mathers, and Y. Lee: Formation of tethered nanolayers: three regimes of kinetics. Macromolecules 35, 7054–7066 (2002).

    CAS  Google Scholar 

  97. F.T. Oyerokun and R.A. Vaia: Distribution in the grafting density of endfunctionalized polymer chains adsorbed onto nanoparticle surfaces. Macromolecules 45, 7649–7659 (2012).

    CAS  Google Scholar 

  98. E. Hübner, J. Allgaier, M. Meyer, J. Stellbrink, W. Pyckhout-Hintzen, and D. Richter: Synthesis of polymer/silica hybrid nanoparticles using anionic polymerization techniques. Macromolecules 43, 856–867 (2010).

    Google Scholar 

  99. B.L. Papke, L.S. Bartley, and C.A. Migdal: Adsorption of poly(isobutenyl) succinimide dispersants onto calcium alkylarylsulfonate colloidal dispersions in hydrocarbon media. Langmuir 7, 2614–2619 (1991).

    CAS  Google Scholar 

  100. N. Fernandes, P. Dallas, R. Rodriguez, A.B. Bourlinos, V. Georgakilas, and E.P. Giannelis: Fullerol ionic fluids. Nanoscale 2, 1653–1656 (2010).

    CAS  Google Scholar 

  101. N.J. Fernandes, J. Akbarzadeh, H. Peterlik, and E.P. Giannelis: Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids. ACS Nano 7, 1265–1271 (2013). doi:10.1021/nn304735r

    CAS  Google Scholar 

  102. B. Radhakrishnan, R. Ranjan, and W.J. Brittain: Surface initiated polymerizations from silica nanoparticles. Soft Matter 2, 386 (2006).

    CAS  Google Scholar 

  103. R.C. Advincula: Surface initiated polymerization from nanoparticle surfaces. J. Dispers. Sci. Technol. 24, 343–361 (2003).

    CAS  Google Scholar 

  104. J. Pyun and K. Matyjaszewski: Synthesis of nanocomposite organic/ inorganic hybrid materials using controlled/‘living’ radical polymerization. Chem. Mater. 13, 3436–3448 (2001).

    CAS  Google Scholar 

  105. Q. Zhou, S. Wang, X. Fan, R. Advincula, and J. Mays: Living anionic surface-initiated polymerization (LASIP) of a polymer on silica nanoparticles. Langmuir 18, 3324–3331 (2002).

    CAS  Google Scholar 

  106. R. Jordan, N. West, A. Ulman, Y.-M. Chou, and O. Nuyken: Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 34, 1606–1611 (2001).

    CAS  Google Scholar 

  107. K. Min, H. Gao, J.A. Yoon, W. Wu, T. Kowalewski, and K. Matyjaszewski: One-pot synthesis of hairy nanoparticles by emulsion ATRP. Macromolecules 42, 1597–1603 (2009).

    CAS  Google Scholar 

  108. K. Matyjaszewski, H. Dong, W. Jakubowski, J. Pietrasik, and A. Kusumo: Grafting from surfaces for ‘everyone’: ARGET ATRP in the presence of air. Langmuir 23, 4528–4531 (2007).

    CAS  Google Scholar 

  109. K. Matyjaszewski and N.V. Tsarevsky: Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276–288 (2009).

    CAS  Google Scholar 

  110. M.H. Stenzel: Hairy Core-Shell Nanoparticles via RAFT: where are the opportunities and where are the problems and challenges?. Macromol. Rapid Commun. 30, 1603–1624 (2009).

    CAS  Google Scholar 

  111. C. Li and B.C. Benicewicz: Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition− fragmentation chain transfer polymerization. Macromolecules 38, 5929–5936 (2005).

    CAS  Google Scholar 

  112. Y. Li and B.C. Benicewicz: Functionalization of silica nanoparticles via the combination of surface-initiated raft polymerization and click reactions. Macromolecules 41, 7986–7992 (2008).

    CAS  Google Scholar 

  113. D.J. Siegwart, K.A. Whitehead, L. Nuhn, G. Sahay, H. Cheng, S. Jiang, M. Ma, A. Lytton-Jean, A. Vegas, P. Fenton, C.G. Levins, K.T. Love, H. Lee, C. Cortez, S.P. Collins, Y.F. Li, J. Jang, W. Querbes, C. Zurenko, T. Novobrantseva, R. Langer, and D.G. Anderson: Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. USA 108, 12996–13001 (2011).

    CAS  Google Scholar 

  114. C. Sanchez, B. Julián, P. Belleville, and M. Popall: Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559 (2005).

    CAS  Google Scholar 

  115. M. Trikeriotis, W.J. Bae, E. Schwartz, M. Krysak, N. Lafferty, P. Xie, B. Smith, P.A. Zimmerman, C.K. Ober, and E.P. Giannelis: Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. In Proceedings of SPIE, M.L. Rieger, J. Thiele ed, 76390E-76390E-10 (Society of Photo-Optical Instrumentation Engineers DO — 10.1117/12.846672, 2010), pp. 7639.

    Google Scholar 

  116. N.A. Kotov: Ordered layered assemblies of nanoparticles. MRS Bull. 26, 992–997 (2001).

    CAS  Google Scholar 

  117. Y. Kim, D. Kim, I. Kwon, H.W. Jung, and J. Cho: Solvent-free nanoparticle fluids with highly collective functionalities for layer-by-layer assembly. J. Mater. Chem. 22, 11488 (2012).

    CAS  Google Scholar 

  118. J. Zhang, Q. Li, X. Di, Z. Liu, and G. Xu: Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films. Nanotechnology 19, 435606 (2008).

    Google Scholar 

  119. N. Sakai, G.K. Prasad, Y. Ebina, K. Takada, and T. Sasaki: Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light. Chem. Mater. 18, 3596–3598 (2006).

    CAS  Google Scholar 

  120. M.S. Mauter, Y. Wang, K.C. Okemgbo, C.O. Osuji, E.P. Giannelis, and M. Elimelech: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3, 2861–2868 (2011).

    CAS  Google Scholar 

  121. A. Tiraferri, Y. Kang, E.P. Giannelis, and M. Elimelech: Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environ. Sci. Technol. 46, 11135–11144 (2012).

    CAS  Google Scholar 

  122. A. Tiraferri, Y. Kang, E.P. Giannelis, and M. Elimelech: Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interfaces 4, 5044–5053 (2012).

    CAS  Google Scholar 

  123. J. Fang, A. Kelarakis, L. Estevez, Y. Wang, R. Rodriguez, and E. P. Giannelis: Superhydrophilic and solvent resistant coatings on polypropylene fabrics by a simple deposition process. J. Mater. Chem. 20, 1651 (2010).

    CAS  Google Scholar 

  124. D.M. Guldi, I. Zilbermann, G. Anderson, N.A. Kotov, N. Tagmatarchis, and M. Prato: Nanosized inorganic/organic composites for solar energy conversion. J. Mater. Chem. 15, 114 (2005).

    CAS  Google Scholar 

  125. J.A. Labastide, M. Baghgar, I. Dujovne, Y. Yang, A.D. Dinsmore, B. G. Sumpter, D. Venkataraman, and M.D. Barnes: Polymer nanoparticle superlattices for organic photovoltaic applications. J. Phys. Chem. Lett. 2, 3085–3091 (2011).

    CAS  Google Scholar 

  126. D.Y. Lee, J.T. Pham, J. Lawrence, C.H. Lee, C. Parkos, T. Emrick, and A. J. Crosby: Macroscopic nanoparticle ribbons and fabrics. Adv. Mater. Weinheim (2012). doi:10.1002/adma.201203719

    Google Scholar 

  127. H.S. Kim, C.H. Lee, P.K. Sudeep, T. Emrick, and A.J. Crosby: Nanoparticle stripes, grids, and ribbons produced by flow coating. Adv. Mater. Weinheim 22, 4600–4604 (2010).

    CAS  Google Scholar 

  128. K.-Y.A. Lin and A.-H.A. Park: Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials. Environ. Sci. Technol. 45, 6633–6639 (2011).

    CAS  Google Scholar 

  129. Y. Park, J. Decatur, K.-Y.A. Lin, and A.-H.A. Park: Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization. Phys. Chem. Chem. Phys. 13, 18115–18122 (2011).

    CAS  Google Scholar 

  130. P. Calcagnile, D. Fragouli, I.S. Bayer, G.C. Anyfantis, L. Martiradonna, P. D. Cozzoli, R. Cingolani, and A. Athanassiou: Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6, 5413–5419 (2012).

    CAS  Google Scholar 

  131. A.N. Shipway, E. Katz, and I. Willner: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18–52 (2000).

    CAS  Google Scholar 

  132. N. Krasteva, I. Besnard, B. Guse, R.E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer: Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2, 551–555 (2002).

    CAS  Google Scholar 

  133. L. Wang, X. Shi, N.N. Kariuki, M. Schadt, G.R. Wang, Q. Rendeng, J. Choi, J. Luo, S. Lu, and C.-J. Zhong: Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties. J. Am. Chem. Soc. 129, 2161–2170 (2007).

    CAS  Google Scholar 

  134. C. Sönnichsen, B.M. Reinhard, J. Liphardt, and A.P. Alivisatos: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005).

    Google Scholar 

  135. R.R. Bhattacharjee, R. Li, L. Estevez, D.-M. Smilgies, A. Amassian, and E.P. Giannelis: A plasmonic fluid with dynamically tunable optical properties. J. Mater. Chem. 19, 8728 (2009).

    CAS  Google Scholar 

  136. T. Vossmeyer, C. Stolte, M. Ijeh, A. Kornowski, and H. Weller: Networked gold-nanoparticle coatings on polyethylene: charge transport and strain sensitivity. Adv. Funct. Mater. 18, 1611–1616 (2008).

    CAS  Google Scholar 

  137. K.J. Loh and D. Chang: Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 46, 228–237 (2010).

    Google Scholar 

  138. Y. Lu, G.L. Liu, and L.P. Lee: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5, 5–9 (2005).

    CAS  Google Scholar 

  139. V. Fabregat, M.A. Izquierdo, M.I. Burguete, F. Galindo, and S.V. Luis: Quantum dot–polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorg. Chim. Acta 381, 212–217 (2012).

    CAS  Google Scholar 

  140. D. Kim and L.A. Archer: Nanoscale organic-inorganic hybrid lubricants. Langmuir 27, 3083–3094 (2011).

    CAS  Google Scholar 

  141. A. Nomura, K. Okayasu, K. Ohno, T. Fukuda, and Y. Tsujii: Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44, 5013–5019 (2011).

    CAS  Google Scholar 

  142. A.A. Voevodin, R.A. Vaia, S.T. Patton, S. Diamanti, M. Pender, M. Yoonessi, J. Brubaker, J.-J. Hu, J.H. Sanders, B.S. Phillips, and R. I. MacCuspie: Nanoparticle-wetted surfaces for relays and energy transmission contacts. Small 3, 1957–1963 (2007).

    CAS  Google Scholar 

  143. S.T. Patton, A.A. Voevodin, R.A. Vaia, M. Pender, S.J. Diamanti, and B. Phillips: Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J. Microelectromech. Syst. 17, 741–746 (2008).

    CAS  Google Scholar 

  144. J.L. Nugent, S.S. Moganty, and L.A. Archer: Nanoscale organic hybrid electrolytes. Adv. Mater. Weinheim 22, 3677–3680 (2010).

    CAS  Google Scholar 

  145. S.S. Moganty, N. Jayaprakash, J.L. Nugent, J. Shen, and L.A. Archer: Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew. Chem. 122, 9344–9347 (2010).

    Google Scholar 

  146. S. Nambiar and J.T.W. Yeow: Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012).

    CAS  Google Scholar 

  147. K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii, and T. Fukuda: Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules 39, 1245–1249 (2006).

    CAS  Google Scholar 

  148. E. Centeno and D. Cassagne: Graded photonic crystals. Opt. Lett. 30, 2278–2280 (2005).

    Google Scholar 

  149. W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou: Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    CAS  Google Scholar 

  150. R.S. Penciu, H. Kriegs, G. Petekidis, G. Fytas, and E.N. Economou: Phonons in colloidal systems. J. Chem. Phys. 118, 5224 (2003).

    CAS  Google Scholar 

  151. C. Tang, L. Bombalski, M. Kruk, M. Jaroniec, K. Matyjaszewski, and T. Kowalewski: Nanoporous carbon films from ‘hairy’ polyacrylonitrilegrafted colloidal silica nanoparticles. Adv. Mater. 20, 1516–1522 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). This material is based upon work supported by the National Science Foundation under Grant No. IIP-1114275 and work supported by NYSERDA under Grant No. 18507. NYSERDA has not reviewed the information contained herein, and the opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York. This work was funded in part by the Materials and Manufacturing Directorate of the Air Force Research Laboratory and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Vaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, N.J., Koerner, H., Giannelis, E.P. et al. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Communications 3, 13–29 (2013). https://doi.org/10.1557/mrc.2013.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.9

Navigation