Skip to main content
Log in

Epitaxial PZT films for MEMS printing applications

  • Thin-film piezoelectric MEMS
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Films of piezoelectric and ferroelectric oxides have been widely investigated for various applications, including microelectromechanical systems (MEMS) for printing. Pb(Zr,Ti)O3 is of particular interest due to its excellent piezoelectric properties. Control of the density, crystalline orientation, and compositional uniformity is essential to obtain these properties. In this article, we review recent progress on the fabrication of epitaxial Pb(Zr,Ti)O3 films, in which the aforementioned control can be achieved. We discuss the different approaches used for the deposition of the epitaxial piezoelectric layer as well as the achieved degrees of the epitaxy. Furthermore, the integration of these piezoelectric layers in MEMS and the corresponding performance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. “Status of the MEMS industry” (Market and Technology Report, Yole Development, Rockville, MD, July 2011).

  2. M.A. Groninger, P.G.M. Kruijt, H. Reinten, R.H. Schippers, J.M.M. Simons, European Patent EP 1 378 360 A1 ( 2003).

  3. K.S. Kwon, W. Kim, Sens. Actuators, A 140, 75 (2007).

    Google Scholar 

  4. D. Damjanovic, J. Am. Ceram. Soc. 88 (10), 2663 (2005).

  5. M. Kohli, A. Seifert, P. Muralt, Integr. Ferroelectr. 22 (1), 453 (1998).

  6. S.B. Desu, I.K. Yoo, J. Electrochem. Soc. 140, L133 (1993).

  7. D.J. Wouters, G. Willems, G. Groeseneken, H.E. Meas, K. Brooks, Integr. Ferroelectr. 7, 173 (1995).

  8. T. Baiatu, R. Waser, K.-H. Hardtl, J. Am. Ceram. Soc. 73, 1663 (1990).

  9. G. Shirane, K. Suzuki, J. Phys. Soc. Jpn. 7, 333 (1952).

  10. D.L. Polla, L.F. Francis, Annu. Rev. Mater. Sci. 28, 563 (1998).

  11. B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954).

  12. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).

  13. R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).

  14. R.W. Schwartz, J. Ballato, G.H. Heartling, in Ceramic Materials for Electronics, R.C. Buchanan, Ed. (Marcel Dekker, New York, 2004), pp. 207–322.

  15. R. Takayama, Y. Tomita, J. Appl. Phys. 65, 1666 (1989).

  16. J. Scott, C. Araujo, Science 246, 1400 (1989).

  17. T. Tybell, C.H. Ahn, J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).

  18. D. Fong, G. Stephenson, S. Streiffer, J. Eastman, O. Auciello, P. Fuoss C. Thompson, Science 304, 1650 (2004).

  19. H. Morioka, G. Asano, T. Oikawa, H. Funakubo, K. Saito, Appl. Phys. Lett. 82, 4761 (2003).

  20. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, U. Gosele, Adv. Mater. 18, 1657 (2006).

  21. P. Muralt, R. Polcawich, S. Trolier-Mckinstry, MRS Bull. 34, 658 (2009).

  22. S. Trolier-McKinstry, P. Muralt, J. Electroceram. 12, 7 (2004).

  23. P. Muralt, J. Am. Ceram. Soc. 91, 1385 (2008).

  24. S.H. Baek, J. Park, D.M. Kim, V. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958 (2011).

  25. Y.B. Jeon, R. Sood, J.-H. Jeong, S.-G. Kim, Sens. Actuators, A 122, 16 (2005).

  26. S. Roundy, P.K. Wright, Smart Mater. Struct. 13 1131 (2004).

  27. H.-C. Song, H.-C. Kim, C.-Y. Kang, H.-J. Kim, S.-J. Yoon, D.-Y. Jeong, J. Electroceram. 23, 301 (2009).

  28. H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, L. Wang, D. Chen, B.-C. Cai, Y. Liu, Microelectron. J. 37, 1280 (2006).

  29. D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H.C. Wikle, D.-J. Kim, J. Micromech. Microeng. 18, 055017 (2008).

  30. T. Xu, Z. Wang, J. Miao, L. Yu, C.M. Li, Biosens. Bioelectron. 24, 638 (2008).

  31. J.Z. Tsai, C.J. Chen, W.Y. Chen, J.T. Liu, C.Y. Liao, Y.M. Hsin, Sens. Actuators, B 139, 259 (2009).

  32. W. Pang, L. Yan, H. Zhang, H. Yu, E.S. Kim, W.C. Tang, Appl. Phys. Lett. 88, 243503 (2006).

  33. S. Shin, N.-E. Lee, H.-D. Park, J.-S. Park, J. Lee, Integr. Ferroelectr. 80, 355 (2006).

  34. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

  35. S. Utsugi, T. Fujisawa, R. Ikariyama, S. Yasui, H. Nakaki, T. Yamada, M. Ishikawa, M. Matsushima, H. Morioka, H. Funakubo, Appl. Phys. Lett. 94, 052906 (2009).

  36. T. Fujisawa, H. Nakaki, R. Ikariyama, T. Yamada, H. Funakubo, Appl. Phys. Express 1, 085001 (2008).

  37. S. Utsugi, T. Fujisawa, Y. Ehara, T. Yamada, M. Matsushima, H. Funakubo Appl. Phys. Lett. 96, 102905 (2010).

  38. C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. van Dover, J.H. Marshall, J.W.P. Hsu, J.J. Krajewski, W.F. Peck Jr., Science 258, 1799 (1992).

  39. S. Yokoyama, Y. Honda, H. Morioka, T. Oikawa, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, Appl. Phys. Lett. 83, 2408 (2003).

  40. S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, T. Yamamoto, H. Okino, O. Sakata, S. Kimura, J. Appl. Phys. 98, 94106 (2005).

  41. L.E. Cross, Mater. Chem. Phys. 43, 108 (1996).

  42. H. Fu, R.E. Cohen, Nature 403, 281 (2000).

  43. D.-J. Kim, J. Maria, A.I. Kingon, S.K. Streiffer, J. Appl. Phys. 93, 5568 (2003).

  44. P. Muralt, J. Amer. Ceram. Soc. 91, 1385 (2008).

  45. J.W. Reiner, A.M. Kolpak, Y. Segal, K.F. Garrity, S. Ismail-Beigi, C.H. Ahn, F.J. Walker, Adv. Mater. 22, 2919 (2010).

  46. D.S. Shin, S.T. Park, H.S. Choi, I.H. Choi, J.Y. Lee, Thin Solid Films 354, 251 (1999).

  47. E. Tokumitsu, K. Itani, B.-K. Moon, H. Ishiwara, Jpn. J. Appl. Phys. 34, 5202 (1995).

  48. P. Revesz, J. Li, N. Szabo Jr., W. Mayer, D. Caudillo, E.R. Myers, Mater. Res. Soc. Symp. Proc. 243, 101 (1991).

  49. A.K. Sharma, J. Narayan, C. Jin, A. Kvit, S. Chattopadhyay, C. Lee, Appl. Phys. Lett. 76, 1458 (2000).

  50. M.B. Lee, M. Kawasaki, M. Yoshimoto, H. Koinuma, Jpn. J. Appl. Phys. 35, L574 (1996).

  51. N.A. Basit, H.K. Kim, J. Blachere, Appl. Phys. Lett. 73, 3941 (1998).

  52. Y. Wang, C. Ganpule, B.T. Liu, H. Li, K. Mori, B. Hill, M. Wuttig, R. Ramesh, Appl. Phys. Lett. 80, 97 (2002).

  53. Y.K. Wang, T.Y. Tseng, P. Lin, Appl. Phys. Lett. 80, 3790 (2002).

  54. B.T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J.H. Haeni, D.G. Schlom, W. Tian, X.Q. Pan, F.J. Walker, R.A. McKee, Appl. Phys. Lett. 80, 4801 (2002).

  55. B.K. Moona, H. Ishiwaraa, E. Tokumitsua, M. Yoshimoto, Thin Solid Films 385, 307 (2001).

  56. M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodama, H. Yamawaki, T. Yamaoka, J. Electrochem. Soc. 129, 2569 (1982).

  57. S. Matsubara, Jpn. J. Appl. Phys. 24, 10 (1985).

  58. H. Fukumoto, H. Fukumoto, T. Imura, Y. Osaka, Appl. Phys. Lett. 55, 360 (1989).

  59. S.J. Wang, C.K. Ong, L.P. You, S.Y. Xu, Semicond. Sci. Technol. 15, 836 (2000).

  60. J.J. Lee, C.L. Thio, S.B. Desu, J. Appl. Phys. 78, 5073 (1995).

  61. A.Q. Jiang, J.F. Scott, M. Dawber, C. Wang, J. Appl. Phys. 92, 6756 (2002).

  62. C.W. Law, K.Y. Tong, J.H. Li, K. Li, M.C. Poon, Thin Solid Films 354, 162 (1999).

  63. C.B. Eom, R.B. van Dover, J.M. Phillips, D.J. Werder, J.H. Marshall, C.H. Chen, R.J. Cava, R.M. Fleming, D.K. Fork, Appl. Phys. Lett. 63, 2570 (1993).

  64. M-.S. Chen, T.-B. Wu, J.-M. Wu, Appl. Phys. Lett. 68, 1430 (1996).

  65. J. Lee, C.H. Choi, B.H. Park, T.W. Noh, J.K. Lee, Appl. Phys. Lett. 72, 3380 (1998).

  66. S.Y. Hou, J. Kwo, R.K. Watts, J.-Y. Cheng, D.K. Fork, Appl. Phys. Lett. 67, 1387 (1995).

  67. M. Dekkers, M.D. Nguyen, R. Steenwelle, P.M. te Riele, D.H.A. Blank, G. Rijnders, Appl. Phys. Lett. 95, 012902 (2009).

  68. H. Mori, H. Ishiwara, Jpn. J. Appl. Phys. 30, L1415 (1991); R.A. McKee, F.J. Walker, J.R. Conner, E.D. Specht, D.E. Zelmon, Appl. Phys. Lett. 59, 782 (1991); R.A. McKee, F.J. Walker, M.F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).

  69. K.J. Hubbard, D.G. Schlom, J. Mater. Res. 11, 2757 (1996); D.G. Schlom, J.H. Haeni, Mat. Res. Bull. 27, 198 (2002).

  70. J. Lettieri, J.H. Haeni, D.G. Schlom, J. Vac. Sci. Technol., A 20, 1332 (2002).

  71. J.W. Reiner, K.F. Garrity, F.J. Walker, S. Ismail-Beigi, C.H. Ahn, Phys. Rev. Lett. 101, 105503 (2008).

  72. A. Lin, X. Hong, V. Wood, A.A. Verevkin, C.H. Ahn, R.A. McKee, F.J. Walker, E.D. Specht, Appl. Phys. Lett. 78, 2034 (2001).

  73. D.M. Kim, C.B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 88, 142904 (2006).

  74. A. Sambri, S. Gariglio, A. Torres Pardo, J.-M. Triscone, O. Stéphan, J.W. Reiner, C.H. Ahn, Appl. Phys. Lett. 98, 12903 (2011).

  75. J. Ouyang, R. Ramesh, A.L. Roytburd, Appl. Phys. Lett. 86, 152901 (2005).

  76. D.M. Kim, C.-B. Eom, V. Nagarajan, J. Ouyang, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 88, 142904 (2006).

  77. J. Pérez de la Cruz, E. Joanni, P.M. Vilarinho, A.L. Kholkin, J. Appl. Phys. 108, 114106 (2010).

  78. P.-E. Janolin, J. Mater. Sci. 44, 5025 (2009).

  79. S. Gariglio, N. Stucki, J.-M. Triscone, G. Triscone, Appl. Phys. Lett. 90, 202905 (2007).

  80. C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. van Dover, J.H. Marshall, J.W.P. Hsu, J.J. Krajewski, W.F. Peck Jr., Science 258, 1799 (1992).

  81. N.A. Pertsev, V.G. Kukhar, H. Kohlstedt, R. Waser, Phys. Rev. B. 67, 054107 (2003).

  82. M.D. Nguyen, M. Dekkers, E. Houwman, R. Steenwelle, X. Wan, A. Roelofs, T. Schmitz-Kempen, G. Rijnders, Appl. Phys. Lett. 99, 252904 (2011).

  83. M.D. Nguyen, H. Nazeer, K. Karakaya, S.V. Pham, R. Steenwelle, M. Dekkers, L. Abelmann, D.H.A. Blank, G. Rijnders, J. Micromech. Microeng. 20, 085022 (2010).

  84. E. van Genuchten, Mikroniek 1, 5 (2011).

    Google Scholar 

Download references

Acknowledgements

H.F. acknowledges a grant from the Japan Society for the Promotion of Science (JSPS) through the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), initiated by the Council for Science and Technology Policy (CSTP) and Ministry of Education, Culture, Sports, Science and Technology of Japan. T.Y. acknowledges a grant from the Japan Science and Technology Agency (JST) through the Precursory Research for Embryonic Science and Technology (PRESTO) program. A.S. and S.G. acknowledge support from the Swiss National Science Foundation through the National Center of Competence in Research “Materials with Novel Electronic Properties-MaNEP” and the EU Project Oxides. Discussions with P. Zubko are gratefully acknowledged. G.R., M.D., and I.S. acknowledge support from the Dutch government through the SmartMix programme. Discussions with M. Nguyen, E. Houwman, R. Steenwelle, and X. Wan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Funakubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funakubo, H., Dekkers, M., Sambri, A. et al. Epitaxial PZT films for MEMS printing applications. MRS Bulletin 37, 1030–1038 (2012). https://doi.org/10.1557/mrs.2012.271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.271

Navigation