Skip to main content
Log in

Strengthening and plasticity in nanotwinned metals

  • Twinning in Metallic Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanotwins require little energy to form in metals, but their impact on strength and ductility is dramatic. New mechanisms of strengthening, strain hardening, ductility, and strainrate sensitivity have been observed in nanowires, films, and bulk materials containing nanoscale twins as the twin-boundary spacing decreases. These mechanisms can act in concert to produce interface-dominated nanomaterials with extreme tensile strength and plastic deformation without breaking. This article reviews recent theoretical and experimental understanding of the physical mechanisms of plasticity in nanotwin-strengthened metals, with a particular focus on the fundamental roles of coherent, incoherent, and defective twin boundaries in plastic deformation of bulk and small-scale cubic systems, and discusses new experimental methods for controlling these deformation mechanisms in nanotwinned metals and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  2. E.L. Wood, F. Sansoz, Nanoscale 4, 5268 (2012).

  3. T. Zhu, J. Li, S. Ogata, S. Yip, MRS Bull. 34, 167 (2009).

  4. T. Zhu, J. Li, Prog. Mater. Sci. 55, 710 (2010).

  5. J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56, 654 (2011).

  6. H.S. Park, K. Gall, J.A. Zimmerman, J. Mech. Phys. Solids 54, 1862 (2006).

  7. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Phys. Rev. Lett. 100, 025502 (2008).

  8. C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, J. Lou, Appl. Phys. Lett. 102, 083102 (2013).

  9. J.W. Wang, S. Narayanan, J.Y. Huang, Z. Zhang, T. Zhu, S.X. Mao, Nat. Commun. 4, 2340 (2013).

  10. J.H. Seo, Y. Yoo, N.Y. Park, S.W. Yoon, H. Lee, S. Han, S.W. Lee, T.Y. Seong, S.C. Lee, K.B. Lee, P.R. Cha, H.S. Park, B. Kim, J.P. Ahn, Nano Lett. 11, 3499 (2011).

  11. A. Sedlmayr, E. Bitzek, D.S. Gianola, G. Richter, R. Moenig, O. Kraft, Acta Mater. 60, 3985 (2012).

  12. L. Wang, P. Liu, P. Guan, M. Yang, J. Sun, Y. Cheng, A. Hirata, Z. Zhang, E. Ma, M. Chen, X. Han, Nat. Commun. 4, 2413 (2013).

  13. D.C. Jang, X.Y. Li, H.J. Gao, J.R. Greer, Nat. Nanotechnol. 7, 594 (2012).

  14. T. Zhu, H.J. Gao, Scr. Mater. 66, 843 (2012).

  15. C. Deng, F. Sansoz, Nano Lett. 9, 1517 (2009).

  16. J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, S.X. Mao, Nat. Commun. 4, 1742 (2013).

  17. C. Deng, F. Sansoz, Acta Mater. 57, 6090 (2009).

  18. C. Deng, F. Sansoz, Scr. Mater. 63, 50 (2010).

  19. J. Wang, F. Sansoz, C. Deng, G. Xu, G. Han, S.X. Mao, Nano Lett. 15, 3865 (2015).

  20. Y. Zhu, Q.Q. Qin, F. Xu, F.R. Fan, Y. Ding, T. Zhang, B.J. Wiley, Z.L. Wang, Phys. Rev. B Condens. Matter 85, 045443 (2012).

  21. T. Filleter, S. Ryu, K. Kang, J. Yin, R.A. Bernal, K. Sohn, S. Li, J. Huang, W. Cai, H.D. Espinosa, Small 8, 2986 (2012).

  22. S. Narayanan, G. Cheng, Z. Zeng, Y. Zhu, T. Zhu, Nano Lett. 15, 4037 (2015).

  23. A.S. Argon, Philos. Mag. 93, 3795 (2013).

  24. A.M. Hodge, Y.M. Wang, J.T.W. Barbee, Scr. Mater. 59, 163 (2008).

  25. Z.S. You, L. Lu, K. Lu, Acta Mater. 59, 6927 (2011).

  26. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009).

  27. J.C. Ye, Y.M. Wang, J.T.W. Barbee, A.V. Hamza, Appl. Phys. Lett. 100, 261912 (2012).

  28. A.M. Hodge, T.A. Furnish, C.J. Shute, Y. Liao, X. Huang, C.S. Hong, Y.T. Zhu, T.W. Barbee, J.R. Weertman, Scr. Mater. 66, 872 (2012).

  29. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, L. Lu, Acta Mater. 61, 217 (2013).

  30. Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, H. Hahn, Acta Mater. 56, 1126 (2008).

  31. T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Natl. Acad. Sci. U.S.A. 104, 3031 (2007).

  32. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464, 877 (2010).

  33. A. Stukowski, K. Albe, D. Farkas, Phys. Rev. B Condens. Matter 82, 224103 (2010).

  34. Y.M. Wang, F. Sansoz, T.B. LaGrange, R.T. Ott, T.W. Barbee Jr., A.V. Hamza, Nat. Mater. 12, 697 (2013).

  35. H.F. Zhou, X.Y. Li, S.X. Qu, W. Yang, H.J. Gao, Nano Lett. 14, 5075 (2014).

  36. Z.H. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304, 273 (2004).

  37. N. Lu, K. Du, L. Lu, H.Q. Ye, Nat. Commun. 6, 7648 (2015).

  38. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Res. 44, 329 (2014).

  39. O. Anderoglu, J. Wang, J.P. Hirth, R.G. Hoagland, A. Misra, X. Zhang, Int. J. Plast. 26, 875 (2010).

  40. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58, 2262 (2010).

  41. N. Li, J. Wang, J.Y. Huang, A. Misra, X. Zhang, Scr. Mater. 64, 149 (2011).

  42. J. Wang, A. Misra, J.P. Hirth, Phys. Rev. B Condens. Matter 83, 064106 (2011).

  43. H. Mirkhani, S.P. Joshi, J. Mech. Phys. Solids 68, 107 (2014).

  44. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, J.P. Hirth, Acta Mater. 59, 5989 (2011).

  45. Y.S. Li, N.R. Tao, K. Lu, Acta Mater. 56, 230 (2008).

  46. Y.S. Li, Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 57, 76 (2009).

  47. G.H. Xiao, N.R. Tao, K. Lu, Mater. Sci. Eng. A A513–514, 13 (2009).

  48. Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60, 211 (2009).

  49. F.K. Yan, G.Z Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059 (2012).

  50. H.T. Wang, N.R. Tao, K. Lu, Acta Mater. 60, 4027 (2012).

  51. O. Bouaziz, D. Barbier, P. Cugy, G. Petitgand, Adv. Eng. Mater. 14, 49 (2012).

  52. F.K. Yan, B.B. Zhang, H.T. Wang, N.R. Tao, K. Lu, Scr. Mater. 112, 19 (2016).

  53. F.K. Yan, N.R. Tao, K. Lu, Scr. Mater. 84–85, 31 (2014).

  54. F.K. Yan, N.R.Tao, F.Archie, I. Gutierrez-Urrutia, D. Raabe, K. Lu, Acta Mater. 81, 487 (2014).

  55. K. Lu, F.K. Yan, H.T. Wang, N.R. Tao, Scr. Mater. 66, 878 (2012).

  56. R.G. Davies, Metall. Trans. A 9A, 678 (1978).

  57. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009).

  58. J. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14, 594 (2015).

  59. N.Q. Vo, J. Schäfer, R.S. Averback, K. Albe, Y. Ashkenazy, P. Bellon, Scr. Mater. 65, 660 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from NSF Grants DMR-1410646 and DMR-1410331, the Ministry of Science and Technology of China (Grant No. 2012CB932201), the National Natural Science Foundation of China (Grants 51231006 and 51171182), the Key Research Program of the Chinese Academy of Sciences (Grant No. KGZD-EW-T06), and the DOE, Office of Basic Energy Sciences at Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sansoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansoz, F., Lu, K., Zhu, T. et al. Strengthening and plasticity in nanotwinned metals. MRS Bulletin 41, 292–297 (2016). https://doi.org/10.1557/mrs.2016.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.60

Navigation